基于Shi-Tomas和RootSIFT的多尺度曲率特征图像拼接算法
DOI:
CSTR:
作者:
作者单位:

1.北京邮电大学理学院 北京 100876; 2.北京邮电大学计算机学院 北京 100876; 3.东南数字经济发展研究院 衢州 324000

作者简介:

通讯作者:

中图分类号:

TP3;TN911.73

基金项目:

国家自然科学基金(61370195)项目资助


Multi-scale curvature feature image stitching algorithm based on Shi-Tomasi and RootSIFT
Author:
Affiliation:

1.School of Science, Beijing University of Posts and Telecommunication,Beijing 100876, China; 2.School of Computer Science, Beijing University of Posts and Telecommunication,Beijing 100876, China; 3.Southeast Digital Economy Development Research Institute,Quzhou 324000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全景拼接或视频融合等技术应用于室外环境时,往往有复杂的场景和光照条件,导致算法的关键点检测能力下降。曲率是一种描述图像边缘的稳定数学特征,对于复杂场景和光照具有良好稳定性。本文深入研究图像拼接中多尺度曲率特征的提取和SIFT算子的Hellinger核变换,提出一种基于Shi-Tomasi和RootSIFT的多尺度曲率特征图像拼接算法。首先,对高斯模糊预处理的图像利用多尺度ShiTomasi可以提取不同分辨率下光照稳定的关键点,使算法更适用于处理复杂环境;其次,经过Hellinger 核变换的RootSIFT可以强化多尺度特征提取的过程,使其在欧式距离更加鲁棒,能更好应对光照和噪声的变化;另外,FLANN快速匹配在处理大规模数据时具有较高的效率;最后在变换估计上,RANSAC的改进算法PROSAC可以进一步提升拼接的速度和质量。检测性能实验结果表明,本文算法可以更精准地检测图像的边缘曲率信息,特征检测能力相比原始SIFT算法提高51%,相比单一尺度算法提高182%;而多尺度参数组的对比结果表明,算法可以实现进一步调优,综合提升检测能力和实时性能,具备良好的适应性。

    Abstract:

    When applying techniques such as panoramic stitching or video fusion to outdoor environments, complex scenes and lighting conditions often lead to a decline in the algorithm’s keypoint detection capability. Curvature is a stable mathematical feature that describes image edges and exhibits good stability under complex scenes and lighting conditions. This paper delves into the extraction of multi-scale curvature features in image stitching and the Hellinger kernel transformation of the SIFT operator, proposing a multi-scale curvature feature image stitching algorithm based on Shi-Tomasi and RootSIFT. Firstly, the multi-scale Shi-Tomasi method is used to extract illumination-stable keypoints at different resolutions from Gaussian-blurred preprocessed images, making the algorithm more suitable for handling complex environments. Secondly, the RootSIFT enhanced by the Hellinger kernel transformation strengthens the multi-scale feature extraction process, making it more robust to changes in illumination and noise in Euclidean distance. Additionally, FLANN fast matching demonstrates high efficiency in processing large-scale data. Finally, in transformation estimation, the improved PROSAC algorithm of RANSAC can further enhance the speed and quality of stitching. Experimental results on detection performance show that the proposed algorithm can more accurately detect the curvature information of image edges, with feature detection capability improved by 51% compared to the original SIFT algorithm and by 182% compared to single-scale algorithms. The comparative results of multi-scale parameter groups indicate that the algorithm can achieve further optimization, comprehensively enhancing detection capability and real-time performance, demonstrating good adaptability.

    参考文献
    相似文献
    引证文献
引用本文

李英浩,牛少彰,郝启贤,安洪旭.基于Shi-Tomas和RootSIFT的多尺度曲率特征图像拼接算法[J].电子测量技术,2024,47(14):42-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码