改进YOLOv8的轻量化安全帽佩戴检测算法
DOI:
CSTR:
作者:
作者单位:

1.西南科技大学信息学院 绵阳 621000; 2.特殊环境机器人技术四川省重点实验室 绵阳 621000

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

国家自然科学基金 (61771411) 项目资助


Lightweight safety helmet wearing detection algorithm of improved YOLOv8
Author:
Affiliation:

1.School of Information Engineering, Southwest University of Science and Technology,Mianyang 621000, China; 2.Sichuan Provincial Key Laboratory of Robot Technology Used for Special Environment,Mianyang 621000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对安全帽佩戴检测模型大、运算复杂、对运算平台资源要求高的问题,提出了基于YOLOv8改进的轻量化安全帽佩戴检测算法YOLOv8-MBS。首先,利用MobileNetv3与SPPF共同组成新的轻量级主干层,降低了算法的参数量和计算量。其次,使用加权双向金字塔增强了算法的特征提取与特征表达能力,降低了误检率。最后,嵌入SimAM无参数注意力机制,提升网络对位置信息与安全帽特征的关联度,但不增加额外计算负担。实验结果表明,对比原始网络YOLOv8n,改进后的YOLOv8-MBS在保持较高的检测精度的同时,运算量降低35.96%,参数量降低25.63%,模型大小降低23.22%,帧率提高12.52 fps。模型的轻量化降低了部署成本,为嵌入式部署及大规模应用提供了理论支持。

    Abstract:

    In response to the issues of large model size, complex computations, and high resource demands on computational platforms in safety helmet detection models, a lightweight safety helmet detection algorithm called YOLOv8-MBS, based on an improvement of YOLOv8, is proposed. A new lightweight backbone module was first formed by combining MobileNetv3 with SPPF, reducing the algorithm′s parameter and computational load. Moreover, the algorithm′s feature extraction and representation capabilities are enhanced using a weighted bidirectional feature pyramid network, which also reduces the false detection rate. Finally, the SimAM module is incorporated to improve the network′s correlation between positional information and safety helmet features without increasing the computational burden. Experimental results show that compared to the original YOLOv8n network, the improved YOLOv8-MBS maintains high detection accuracy while reducing computation by 35.96%, the number of parameters by 25.63%, and model size by 23.22%, and increasing the frame rate by 12.52 fps. The lightweight nature of the model reduces deployment costs and provides theoretical support for embedded deployment and large-scale applications.

    参考文献
    相似文献
    引证文献
引用本文

张国鹏,周金治,马光岑,贺浩洋.改进YOLOv8的轻量化安全帽佩戴检测算法[J].电子测量技术,2024,47(17):147-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-11
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知