基于模态分解和TCN-BiLSTM的风电功率预测
DOI:
CSTR:
作者:
作者单位:

兰州交通大学数理学院 兰州 730070

作者简介:

通讯作者:

中图分类号:

TM614;TN.9

基金项目:

国家自然科学基金(11962011)项目资助


Wind power prediction based on mode decomposition and TCN-BiLSTM
Author:
Affiliation:

School of Mathematics and Physics, Lanzhou Jiaotong University,Lanzhou 730070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风电功率的准确预测对于能源系统的稳定运行和电力调度方面具有重要作用。由于风电功率序列具有随机性,间歇性和非线性的特点,使用传统预测以及单一预测模型往往会存在预测精度较低的问题,且容易受到噪声干扰。为了提升风电功率预测的准确性,本文提出了一种CEEMDAN分解技术与神经网络模型相结合的方法。首先将风电功率序列用CEEMDAN方法分解为若干数量的本征模态分量,通过样本熵值来计算每个模态分量的复杂度,根据样本熵值大小将不同的模态分量重组为重构的子序列。将中高频序列数据使用BiLSTM模型来进行预测,而中低频序列数据则采用TCN模型来预测。最后,将不同模型的预测值叠加得到最终的预测值。通过仿真实验,结果表明本文模型在评价指标RMSE、MAE、SMAPE取值均最低,R方值最高,这几个指标的取值均值分别为91.413 2 MW、53.517 3 MW、22.263 8 MW、0.980 7,均优于对比模型,说明本文模型具有较高的预测精度。

    Abstract:

    Accurate prediction of wind power plays an important role in the stable operation of the energy system and power dispatch. Due to the stochastic, intermittent, and nonlinear characteristics of wind power sequences, the use of traditional prediction and a single prediction model often suffers from low prediction accuracy and is easily interfered by noise. In order to improve the accuracy of wind power prediction, a method combining CEEMDAN decomposition technology and neural network model is proposed in this paper. Firstly, the wind power sequence is decomposed into a number of intrinsic mode components by the CEEMDAN method. The complexity of each mode component is calculated by the sample entropy value, and the different intrinsic mode components are reorganized into reconstructed subsequences based on the sample entropy values. Middle and high-frequency sequence data are predicted using the BiLSTM model, while middle and low-frequency sequence data are predicted using the TCN model. Finally, the predicted values from the different models are combined to obtain the final prediction. Through simulation experiments, the results demonstrate that the model proposed in this paper achieves the lowest values in the evaluation metrics RMSE, MAE, and SMAPE, and the highest value in the R-squared metric. The average values of these indicators are 91.413 2 MW, 53.517 3 MW, 22.263 8 MW, and 0.980 7, respectively, which are better than those of the comparison models. This indicates that the model presented in this paper has high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

冯俊磊,吕卫东,段雪艳,张幽迪.基于模态分解和TCN-BiLSTM的风电功率预测[J].电子测量技术,2024,47(14):49-56

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码