基于改进Yolov8-pose的分心驾驶检测与识别
作者:
作者单位:

西安科技大学通信与信息工程学院 西安 710000

中图分类号:

TN919.8

基金项目:

国家自然科学基金(U19B2015)项目资助


Distracting driving detection and identification based on an improved YOLOv8-pose
Author:
Affiliation:

School of Communication and Information Engineering, Xi′an University of Science and Technology, Xi′an 710000, China

  • 摘要
  • | |
  • 访问统计
  • | | | | |
  • 文章评论
    摘要:

    针对现有的分心驾驶检测算法存在检测率低、检测速率慢等问题,本文构建了一种基于改进YOLOv8-pose的分心驾驶检测识别模型YOLOv8-EFM。首先,通过使用EfficientViT更换YOLOv8-pose的主干网络,结合CNN和VIT之间的互补性,提升了检测的准确率;其次,使用FasterBlock模块替换C2f中的Bottleneck模块,增加了检测速率并减小模型参数;最后在SPPF后加入了轻量级的MLCA注意力模块,在模型大小和准确性之间取得了良好的平衡。实验结果表明,本文所构建的YOLOv8-EFM模型,mAP50可以达到98.9%,模型大小只有9.7 M,该方法不仅可以识别出具体分心行为,还可以检测上半身的人体骨架,可以有效应用在驾驶员分心驾驶的检测场景中。

    Abstract:

    Aiming at the existing distracted driving detection algorithms, this paper constructs a YOLOv8-EFM distracted driving detection and recognition model based on improved YOLOv8-pose. Firstly, by replacing the backbone network of YOLOv8-pose with EfficientViT, combined with the complementarity between CNN and VIT, the detection accuracy is improved; secondly, replacing the Bottleneck module in C2f with FasterBlock module, increasing the detection rate and reducing the model parameters; finally, the lightweight MLCA attention module is added after SPPF, achieving a good balance between model size and accuracy. The experimental results show that the YOLOv8-EFM model constructed in this paper can detect mAP 50 with 98.9%, and the model size is only 9.7 M. This method can not only detect the specific distraction behavior, but also detect the human skeleton of the upper body, which can be effectively applied in the detection scene of distracted driving.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱周华,侯智杰,田成源,周怡纳.基于改进Yolov8-pose的分心驾驶检测与识别[J].电子测量技术,2024,47(15):135-143

复制
分享
文章指标
  • 点击次数:28
  • 下载次数: 38
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-11-28
文章二维码