基于改进蚁群算法的步行街火灾疏散路径规划
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学信息与通信工程学院 北京 100192; 2.北京信息科技大学高动态导航技术北京市重点实验室 北京 100026

作者简介:

通讯作者:

中图分类号:

TN964

基金项目:

北京市自然科学基金(4222052)、北京信息科技大学促进高校分类发展重点研究培育项目(2121YJPY221)、北京信息科技大学“勤信人才”培育计划项目(QXTCP C202110)、北京市科技创新服务能力建设基本科研业务费(市级)(科研类)(PXM2019_014224_000026)项目资助


Fire evacuation route planning for pedestrian streets based on improved ant colony algorithm
Author:
Affiliation:

1.School of Information and Engineering, Beijing Information Science and Technology University,Beijing 100192, China; 2.Beijing Key Laboratory of High Dynamic Navigation Technology, Beijing Information Science and Technology University,Beijing 100026, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    商业步行街作为新兴建筑,方便了人们的生活,但也潜藏着严重的火灾风险。针对商业步行街突发火灾事件时的人员疏散问题,提出了在烟气环境下基于改进蚁群算法的路径规划算法。首先,采用高斯烟羽模型计算道路上烟气的浓度值,在此基础上采用当量距离代替欧氏距离量化气体对人的损害,同时考虑人群密度对速度的影响,提出改进的启发式函数。考虑到传统蚁群算法在路径规划中收敛速度慢、易陷入局部最优、冗余节点过多等问题,进一步结合A*算法调整蚁群算法的初始信息素浓度,并改进了路径选择规则、信息素更新规则,加入了防止死锁处理,使得算法在提高全局搜索能力的同时加快搜索效率。最后,对获得的路径进行平滑处理,从而减少冗余节点带来的多余路径长度。通过仿真实验验证了算法不仅在性能方面有了显著的提升,还可以根据火灾环境规划出适合逃生的路径。

    Abstract:

    Pedestrian streets, as emerging urban structures, have made life more convenient but also pose significant fire risks. To address the problem of evacuating people during sudden fire incidents in commercial pedestrian streets, a path planning algorithm based on an improved ant colony algorithm in a smoky environment is proposed. Firstly, the Gaussian plume model is used to calculate the concentration of smoke on the roads. Based on this, the equivalent distance is used instead of the Euclidean distance to quantify the harm of gases to humans. At the same time, a modified heuristic function is proposed by considering the impact of crowd density on speed. Given that traditional ant colony algorithms exhibit slow convergence, a tendency to get trapped in local optima, and an excess of redundant nodes in path planning, the A* algorithm is further integrated to adjust the initial pheromone concentration of the ant colony algorithm. The path selection and pheromone update rules are also improved, and a deadlock prevention mechanism is introduced, enhancing the global search capability and increasing search efficiency. Finally, the obtained path is smoothed to reduce the extra path length caused by redundant nodes. Simulation experiments have validated that the algorithm not only significantly improves performance but also effectively plans escape routes according to the fire environment.

    参考文献
    相似文献
    引证文献
引用本文

朱翠,罗宇豪,王占刚,戴娟.基于改进蚁群算法的步行街火灾疏散路径规划[J].电子测量技术,2024,47(16):73-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知