基于改进EfficientNet的海上风机叶片早期缺陷检测及分类
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌 443002; 2.国网宜昌供电公司 宜昌 443000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN957.52

基金项目:

国家自然科学基金(52107108)项目资助


Early defect detection and classification of offshore wind turbine blades based on improved EfficientNet
Author:
Affiliation:

1.College of Electrical Engineering & New Energy, China Three Gorges University,Yichang 443002, China; 2.State Grid Yichang Power Supply Company,Yichang 443000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对海上风机叶片小尺寸缺陷检测准确率低、分类效果较差的问题,提出一种基于EfficientNet的改进海上风机叶片表面早期缺陷检测模型。首先,在EfficientNet特征提取网络中引入非对称卷积替换普通3×3卷积,增强了卷积核骨架信息,提高网络提取缺陷信息的能力;其次提出一种混合空间通道注意力模块聚焦空间和通道信息,结合BiFPN特征融合模块对不同深度的语义信息进行特征融合,提升算法多尺度特征融合能力;最后引入Focal-EIOU和Focal Loss损失函数计算位置损失和分类损失,提高定位精度,解决模型训练过程中正、负图像样本的比例失衡的问题。实验结果表明,本文所提算法模型平均精度均值为97.6%,对风机叶片表面早期缺陷的检测性能有明显提升。

    Abstract:

    Aiming at the problem of low accuracy and poor classification effect of small size defect detection of offshore wind turbine blades, an improved early defect detection model of offshore wind turbine blade surface based on EfficientNet is proposed. Firstly, the asymmetric convolution is introduced into the EfficientNet feature extraction network to replace the ordinary 3 × 3 convolution, which enhances the convolution kernel skeleton information and improves the ability of the network to extract defect information. Secondly, a hybrid spatial channel attention module is proposed to focus on space and channel information, and the BiFPN feature fusion module is used to fuse the semantic information of different depths to improve the multi-scale feature fusion ability of the algorithm. Finally, Focal-EIOU and Focal Loss functions are introduced to calculate the position loss and classification loss, so as to improve the positioning accuracy and solve the problem of imbalance between positive and negative image samples in the model training process. The experimental results show that the average accuracy of the proposed algorithm model is 97.6%, and the detection performance of early defects on the surface of wind turbine blades is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

付军军,陈林,童华敏,舒征宇,王灿.基于改进EfficientNet的海上风机叶片早期缺陷检测及分类[J].电子测量技术,2024,47(16):110-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知