基于Sobel的FPGA图像边缘检测系统设计
DOI:
CSTR:
作者:
作者单位:

合肥工业大学微电子学院 合肥 230009

作者简介:

通讯作者:

中图分类号:

TN79

基金项目:


Design of FPGA image edge detection system based on Sobel
Author:
Affiliation:

School of Microelectronics, Hefei University of Technology,Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着机器视觉相关领域的研究与发展,对图像处理的要求变得更加复杂和多样,而处理实时图像时,边缘信息检测变的尤为重要。本文设计了一种基于Sobel算法的FPGA图像边缘检测系统,实时进行视频图像的采集、处理和显示。采用自适应阈值和非极大值抑制算法,结合8方向Sobel边缘检测算法以提升检测精度,进行改进前后的Sobel边缘检测算法的仿真验证和硬件实现。采用流水线设计产生滑窗加速图像处理,增强图像处理的实时性。硬件综合实验表明,设计的基于Sobel算法的FPGA图像边缘检测系统,能高效地实现视频流的图像边缘检测,处理图像速度提升57%,边缘细节检测全面,增强视频图像处理效率,可用于目标识别及跟踪研究。

    Abstract:

    As research and development in the field of machine vision continue to advance, the requirements for image processing have become more complex and diverse. Edge information detection is particularly important when processing real-time images. This paper designs an FPGA image edge detection system based on the Sobel algorithm, capable of real-time video image acquisition, processing, and display. Adaptive threshold and non-maximum suppression algorithms are used, combined with an 8-direction Sobel edge detection algorithm to improve detection accuracy. The Sobel edge detection algorithm is validated and implemented in hardware before and after improvement. A pipeline design is adopted to generate a sliding window to accelerate image processing and enhance the real-time performance of image processing. Hardware synthesis experiments show that the FPGA image edge detection system based on the Sobel algorithm can efficiently achieve image edge detection of video streams, improving image processing speed by 57%, providing comprehensive edge detail detection, enhancing video image processing efficiency, and can be used for target recognition and tracking research.

    参考文献
    相似文献
    引证文献
引用本文

宋倩男,刘光柱,武乐林,盖明均.基于Sobel的FPGA图像边缘检测系统设计[J].电子测量技术,2024,47(13):68-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-07
  • 出版日期:
文章二维码