融合多尺度特征的轻量级航拍目标检测算法
DOI:
CSTR:
作者:
作者单位:

陕西科技大学电气与控制工程学院 西安 710021

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

国家自然科学基金(61871206)、陕西省科技厅自然科学基金 (2020JM-509) 项目资助


Target detect algorithm of lightweight in aerial images based on multi-scale feature fusion
Author:
Affiliation:

College of Electrical and Control Engineering, Shanxi University of Science and Technology,Xi′an 710021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍图像中目标尺寸变化大、相互遮挡等原因导致的目标误检漏检问题,以YOLOv8s为基础,提出了一种融合多尺度特征的轻量级目标检测算法。在主干网络中利用轻量级多尺度卷积EMSC替换C2f模块中的Bottleneck,增强多尺度特征表达能力;颈部网络中引入轻量级上采样算子Dysample,捕捉图像细微特征;优化Task Aligned Assigner超参数,解决训练过程中样本不平衡问题。最后,设计系统可视化界面,借助可视化界面完成对航拍目标的检测。在数据集VisDrone2019上的仿真表明,该算法精准率和召回率较基准算法分别提升了2.4%和3.3%,mAP0.5提升了3.5%,有效提高了航拍目标检测效果。在UAVDT数据集上进行模型泛化性实验验证,效果优于其他经典算法。

    Abstract:

    Aiming at the problem of target misdetection and missing detection caused by large size changes and mutual occlusion in UAV aerial images, a lightweight target detection algorithm based on YOLOv8s is proposed by integrating multi-scale features. In the backbone network, lightweight multi-scale convolutional EMSC is used to replace Bottleneck in C2f module, which enhances the expression ability of multi-scale features. The lightweight upsampling operator Dysample is introduced into the neck network to capture the fine features of the image. Task Aligned Assigner hyperparameters are optimized to solve the problem of sample imbalance during training. Finally, the system of visual interface is designed, and the object of aerial photography is detected by visual interface. The simulation on the data set VisDrone2019 shows that the accuracy and recall rate of the algorithm are improved by 2.4% and 3.3% respectively compared with the benchmark algorithm, and mAP0.5 is improved by 3.5%, effectively improving the effect of aerial photography target detection. The model generalization experiment is carried out on UAVDT data set, and the effect is better than other classical algorithms.

    参考文献
    相似文献
    引证文献
引用本文

党宏社,高宛蓉,孟饶辰,张选德.融合多尺度特征的轻量级航拍目标检测算法[J].电子测量技术,2024,47(16):92-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知