多策略增强型蛇优化器的避障路径规划
DOI:
CSTR:
作者:
作者单位:

广西民族大学人工智能学院 南宁 530006

作者简介:

通讯作者:

中图分类号:

TP242;TN966

基金项目:

2023年度广西民族大学人工智能学院科研创新团队项目(RGZNXY202304)资助


Obstacle avoidance path planning of multi-strategy enhanced snake optimizer
Author:
Affiliation:

School of Artificial Intelligence, Guangxi Minzu University,Nanning 530006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对蛇优化器(SO)在机器人路径规划问题求解中存在初始种群多样性不足、前期全局寻优能力弱、后期收敛精度低、容易陷入局部最优等问题,提出一种用于机器人路径规划的多策略增强型蛇优化器(MSESO)。采用佳点集方法对蛇种群进行初始化,增加初始种群多样性,使种群对搜索空间的覆盖更全面;引入两个振荡因子平衡全局搜索与局部开发的过程,并动态更新搜索范围;融入自适应精英反向学习策略充分利用种群有效信息来提高种群质量,增大种群进一步逼近最优解的可能性,加快算法收敛速度和改善收敛精度。将MSESO应用于机器人路径规划,首先开展消融实验来验证改进策略的有效性,接着在不同复杂程度的地图开展MSESO与其他算法的寻路性能对比实验,验证改进算法的优越性。消融实验结果显示,MSESO提出的改进策略均能有效地提升路径规划性能;对比实验结果显示,MSESO的平均路径长度、路径长度方差、平均迭代次数均优于对照组算法,验证了MSESO在路径规划中的鲁棒性和优越性。

    Abstract:

    To address the issues of insufficient initial population diversity, weak global optimization capability in the early stages, low convergence accuracy in the later stages, and susceptibility to local optima in the snake optimizer (SO) for solving robotic path planning problems, a multi-strategy enhanced snake optimizer (MSESO) is proposed. The MSESO utilizes a good point set method to initialize the snake population, thereby increasing the diversity of the initial population and ensuring more comprehensive coverage of the search space. It introduces two oscillation factors to balance the process of global search and local exploitation, dynamically updating the search range. Additionally, the integration of an adaptive elite opposition-based learning strategy effectively leverages valuable information from the population to improve population quality, enhancing the likelihood of approaching the optimal solution, accelerating the algorithm′s convergence speed, and improving convergence accuracy. The MSESO is applied to robotic path planning, beginning with ablation experiment to verify the effectiveness of the proposed strategies. Subsequently, comparative experiments on maps of varying complexity are conducted to assess the pathfinding performance of MSESO against other algorithms, demonstrating the superiority of the improved algorithm. Ablation experiment results show that the proposed strategies in MSESO significantly enhance path planning performance. Comparative experiment results indicate that MSESO outperforms the control algorithms in terms of average path length, path length variance, and average number of iterations, validating the robustness and superiority of MSESO in path planning.

    参考文献
    相似文献
    引证文献
引用本文

苏湘粤,李永胜,朱永进.多策略增强型蛇优化器的避障路径规划[J].电子测量技术,2024,47(16):174-184

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知