基于改进麻雀算法优化电源的BPPID控制策略
DOI:
作者:
作者单位:

1.南京信息工程大学;2.中国电子科技集团公司第五十八研究所;3.无锡学院电子信息工程学院

作者简介:

通讯作者:

中图分类号:

TN86、TN966

基金项目:

国家自然科学基金


BPPID control strategy for optimizing power supply based on improved sparrow algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统麻雀算法优化BPPID初始权值存在易陷入局部最优的问题,本文提出一种基于改进麻雀算法的BPPID控制系统。通过引入复合混沌映射提高种群多样性;利用黄金分割和自适应levy飞行策略,平衡算法全局搜索和局部开发的能力;利用模糊逻辑自适应反向学习策略,提高算法的全局搜索和适应复杂环境的能力。分别用标准麻雀算法、改进的麻雀算法、灰狼优化算法、鲸鱼优化算法、改进的鲸鱼优化算法、粒子群优化算法和改进的粒子群优化算法测试基准函数,对比验证改进麻雀算法的有效性,实验结果表明,改进麻雀算法的系统效益和公平性优于其余算法。将改进麻雀算法应用于开关电源系统的BPPID初始权值的求解上,所得的初始权值能更大程度地提高系统动态响应以及降低超调。

    Abstract:

    This paper proposes a BPPID control system based on an improved sparrow algorithm to address the problem of getting stuck in local optima when optimizing the initial weights of BPPID using the traditional sparrow algorithm. Improving population diversity by introducing composite chaotic mapping; Utilizing the golden ratio and adaptive Levy flight strategy to balance the algorithm's global search and local development capabilities; Using fuzzy logic adaptive reverse learning strategy to improve the algorithm's global search and adaptability to complex environments. The benchmark functions were tested using standard sparrow algorithm, improved sparrow algorithm, grey wolf optimization algorithm, whale optimization algorithm, improved whale optimization algorithm, particle swarm optimization algorithm, and improved particle swarm optimization algorithm to compare and verify the effectiveness of the improved sparrow algorithm. The experimental results showed that the system efficiency and fairness of the improved sparrow algorithm were superior to other algorithms. Applying the improved sparrow algorithm to solve the initial weights of BPPID in switch mode power supply systems can significantly improve the system's dynamic response and reduce overshoot.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-24
  • 最后修改日期:2024-11-01
  • 录用日期:2024-11-04
  • 在线发布日期:
  • 出版日期: