基于多特征融合的图像修复算法
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学自动化与信息工程学院 宜宾 644000; 2.人工智能四川省重点实验室 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

四川轻化工大学人才引进项目(2019RC12)资助


Image inpainting algorithm based on multi-feature fusion
Author:
Affiliation:

1.School of Automation and Information Engineering, Sichuan University of Science & Engineering,Yibin 644000, China; 2.Artificial Intelligence Key Laboratory of Sichuan Province,Yibin 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像修复算法修复结果存在结构一致性差和纹理细节不足等问题,在生成对抗网络(GAN)的框架下,提出一种基于多特征融合的图像修复算法。首先,采用双编码解码结构提取纹理和结构特征信息,并引入快速傅里叶卷积残差块,有效捕获全局上下文特征。然后,通过注意力特征融合(AFF)模块完成结构与纹理特征之间的信息交换,提高图像的全局一致性。并利用密集连接特征聚合(DCFA)模块在多个尺度上提取丰富的语义特征,进一步提升修复图像的一致性和准确性,以呈现更精细的内容。实验结果表明,在破损区域占比为40%~50%时,相较于最优对比算法,所提算法在CelebA-HQ数据集上PSNR和SSIM分别提高1.18%和0.70%,FID降低3.99%。在Paris StreetView数据集上PSNR和 SSIM分别提高1.17%和0.50%,FID降低2.29%。实验证明所提算法能有效修复大面积破损图像,修复结果具有更合理的结构和丰富的纹理细节。

    Abstract:

    Aiming at the problems of poor structural consistency and insufficient texture details in the inpainting results of existing image inpainting algorithms, an image inpainting algorithm based on multi-feature fusion was proposed under the framework of generative adversarial network (GAN). Firstly, the dual encoder-decoder structure is used to extract the texture and structure feature information, and the fast Fourier convolution residual block is introduced to effectively capture the global context features. Then, the information exchange between structure and texture features was completed through the attention feature fusion (AFF) module to improve the global consistency of the image. The dense connected feature aggregation (DCFA) module was used to extract rich semantic features at multiple scales to further improve the consistency and accuracy of the inpainted image, so as to present more detailed content. Experimental results show that, compared with the optimal comparison method, the proposed algorithm improves PSNR and SSIM by 1.18% and 0.70% respectively, and reduces FID by 3.99% on the Celeba-HQ dataset when the proportion of damaged regions is 40%~50%. On the Paris Street View dataset, PSNR and SSIM are increased by 1.17% and 0.50%, respectively, and FID is reduced by 2.29%. Experimentally, it is proved that the suggested algorithm can effectively repair large broken images, and the repaired images have a more sensible structure and richer texture details.

    参考文献
    相似文献
    引证文献
引用本文

蒋行国,黎明.基于多特征融合的图像修复算法[J].电子测量技术,2024,47(18):80-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-20
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知