融合时频特征的通信辐射源个体识别方法
DOI:
CSTR:
作者:
作者单位:

1.宁夏回族自治区无线电监测站 宁夏;2.兰州交通大学电子与信息工程学院 兰州

作者简介:

通讯作者:

中图分类号:

TN971

基金项目:

宁夏回族自治区重点研发计划资助项目(2022BEG03072);宁夏自然科学基金资助项目(2023AAC03741)


Individual identification method for communication radiation sources by integrating time-frequency characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对通信辐射源个体识别在信道噪声干扰下准确率低的问题,利用信号映射到不同时频域对信道噪声干扰抑制效果的差异性,提出了一种融合时频特征的通信辐射源个体识别方法。首先,从辐射源信号中提取I/Q、功率谱、小波谱信息,并通过横向和纵向的一维卷积来融合信号的时频信息;然后使用通道注意力模块和空间注意力模块融合时频特征;最后采用M-ResNeXt网络实现在信道噪声干扰下的辐射源个体识别。实验结果表明,受到信噪比为15dB的高斯白噪声、瑞利、莱斯三种信道噪声干扰下,本文提出的融合时频特征方法识别准确率达到97.6%、97.7%、98.5%,同时面临未知的噪声干扰,在信噪比为15dB时,依然能够取得超过97.7%的识别准确率。因此,融合时频特征方法能够显著提高通信辐射源个体识别的准确率和鲁棒性。

    Abstract:

    In response to the problem of low accuracy in individual identification of communication radiation sources under channel noise interference, a communication radiation source individual identification method that integrates time-frequency characteristics is proposed by utilizing the difference in channel noise interference suppression effect of signal mapping to different time-frequency domains. Firstly, extract I/Q, power spectrum, and wavelet spectrum information from the radiation source signal, and fuse the time-frequency information of the signal through one-dimensional convolution in both horizontal and vertical directions; Then, the channel attention module and spatial attention module are used to fuse time-frequency features; Finally, M-ResNeXt network is used to achieve individual identification of radiation sources under channel noise interference. The experimental results show that under the interference of three channel noises, Gaussian white noise with a signal-to-noise ratio (SNR) of 15dB, Rayleigh, and Rician, the recognition accuracy of the proposed time-frequency feature fusion method reaches 97.6%, 97.7%, and 98.5% respectively. Even when facing unknown noise interference at an SNR of 15dB, it can still achieve a recognition accuracy of over 97.7%. Therefore, the time-frequency feature fusion method can significantly improve the accuracy and robustness of individual communication radiation source identification.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-11
  • 最后修改日期:2024-11-18
  • 录用日期:2024-11-20
  • 在线发布日期:
  • 出版日期:
文章二维码