基于全局注意力的Gam-EEGNet在SSVEP分类中的应用
DOI:
CSTR:
作者:
作者单位:

新疆大学

作者简介:

通讯作者:

中图分类号:

TN911.73, TP183

基金项目:

国家自然科学基金资助项目(52365040)


The application of Gam-EEGNet with global attention mechanism in SSVEP classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    稳态视觉诱发电位(SSVEP)作为脑机接口(BCI)系统中的重要信号类型,因其高稳定性和易操作性而广泛应用于BCI研究。在过去的研究中,已有许多方法在SSVEP信号分类中取得了显著进展,但依然面临着信噪比低、信号非平稳性和个体差异大的挑战。为进一步提升SSVEP分类的准确性和实用性,本文提出了一种结合全局注意力机制与紧凑脑电网络(EEGNet)的新型神经网络架构——Gam-EEGNet。EEGNet作为一种紧凑、高效且适应性强的基础模型,在SSVEP信号处理中具有重要作用。通过在EEGNet中引入全局注意力机制,Gam-EEGNet能够更精确地提取和表征SSVEP信号特征,从而有效降低个体差异和噪声的影响。实验采用了涵盖12种不同频率的SSVEP脑电数据,并将Gam-EEGNet与典型卷积神经网络(CCNN)、滤波器组-时间卷积神经网络(FB-tCNN)和滤波器组-时间卷积神经网络(SSVEPNet)等主流深度学习方法进行了分类性能对比。结果表明,Gam-EEGNet在不同时间窗口下的分类准确率和信息传输率(ITR)均优于其他方法,特别是在0.7 s的短时间窗口内,分类精度达到86.58%;在1 s时间窗内,多名被试者的平均识别准确率超过95%,ITR超过189 bits/min。此外,Gam-EEGNet在训练过程中表现出更好的收敛性和稳定性,具有更快的收敛速度和更低的训练误差。这些结果表明,Gam-EEGNet在SSVEP信号分类中展现出显著的性能提升,尤其适用于实时BCI系统中的快速响应场景,具有广泛的应用潜力。

    Abstract:

    Steady-state visual evoked potential (SSVEP) is an essential signal type in brain-computer interface (BCI) systems, widely utilized in BCI research due to its high stability and ease of operation. While previous studies have achieved significant progress in SSVEP signal classification, challenges such as low signal-to-noise ratio, non-stationarity, and individual variability still persist. To further enhance the accuracy and practicality of SSVEP classification, this paper proposes a novel neural network architecture—Gam-EEGNet—that combines a global attention mechanism with EEGNet. EEGNet, known for its compact, efficient, and adaptive structure, plays a critical role in SSVEP signal processing. By incorporating a global attention mechanism into EEGNet, Gam-EEGNet can more accurately extract and represent SSVEP signal features, effectively reducing individual variability and noise interference. Experiments were conducted using SSVEP EEG data encompassing 12 different frequencies, and the performance of Gam-EEGNet was compared with that of other mainstream deep learning methods, including CCNN, FB-tCNN, and SSVEPNet. The results demonstrate that Gam-EEGNet outperforms these methods in terms of classification accuracy and information transfer rate (ITR) across different time windows, particularly achieving a classification accuracy of 86.58% within a short 0.7-second time window. In a 1-second time window, the average recognition accuracy across multiple subjects exceeded 95%, with an ITR above 189 bits/min. Moreover, Gam-EEGNet showed better convergence and stability during training, with faster convergence and lower training errors. These results indicate that Gam-EEGNet offers significant performance improvements in SSVEP signal classification, making it especially suitable for real-time BCI systems requiring rapid response, with broad application potential.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-22
  • 最后修改日期:2024-10-23
  • 录用日期:2024-10-23
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知