改进YOLOv5的输送带缺陷检测
DOI:
CSTR:
作者:
作者单位:

华北理工大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

TN919.2

基金项目:

河北省高等学校科学研究计划科技重点项目(ZD2020151);唐山市科技创新团队培养计划项目(21130208D)


Improving YOLOv5 conveyor belt defect detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对带式输送机的输送带缺陷检测因没有公开的数据集、缺陷形状多样化、撕裂长短不一而导致检测的精度低的问题,本文将使用线阵相机,并在拍摄过程中采用线激光作为辅助工具,减轻恶劣环境对图像的影响,并提出改进YOLOv5的输送带缺陷检测算法,以保证煤矿的生产安全。首先,在现有数据的基础上,通过多种数据增强方式进行组合的方法进行扩充。然后在特征提取阶段,用类似注意力机制的C3_A替换Backbone中的C3模块,以提高整体性能。接着在特征融合阶段,采用短接的方法将Backbone与Neck的PAN结构结合,以减少特征信息丢失。最后,在损失函数上融入微调后的交并比并设置两个参数,对原始交并比进行缩放和裁剪,有效约束模型预测框与真实框的位置关系,进一步提升了模型对边界框回归的准确性。实验结果表明,输送带缺陷检测的平均精度均值达到88.1%,精确率达到88%,召回率达到86.5%,满足输送带缺陷的检测要求。

    Abstract:

    Aiming at the problem of low detection accuracy of conveyor belt defect detection of belt conveyor due to the lack of public data sets, the diversification of defect shapes and the different lengths of tearing, this paper will use linear array camera and use linear laser as an auxiliary tool in the shooting process to reduce the influence of harsh environment on the image, and put forward an improved YOLOv5 conveyor belt defect detection algorithm to ensure the production safety of coal mine. Firstly, on the basis of the existing data, the method of combining multiple data enhancement methods is extended. Then, in the feature extraction stage, the C3 module in Backbone is replaced with a C3_A similar to the attention mechanism to improve the overall performance. Then, in the feature fusion stage, the short-circuit method is used to combine the PAN structure of Backbone and Neck to reduce the loss of feature information. Finally, the fine-tuned intersection-union ratio is integrated into the loss function and two parameters are set. The original intersection-union ratio is scaled and cropped, which effectively constrains the position relationship between the model prediction box and the real box, and further improves the accuracy of the model 's boundary box regression. The experimental results show that the average accuracy of conveyor belt defect detection is 88.1%, the accuracy rate is 88%, and the recall rate is 86.5%, which meets the detection requirements of conveyor belt defects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-24
  • 最后修改日期:2024-11-01
  • 录用日期:2024-11-06
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知