摘要:针对基于生成式的对抗样本生成方法生成的对抗样本真实性较低和攻击效果欠佳的问题,提出一种基于AdvGAN和CGAN的对抗样本生成方法ACGAN。首先,针对特定目标进行攻击,ACGAN通过在训练和攻击阶段引入额外的目标标签,生成具有针对性的频域上的对抗样本。其次,在生成器和鉴别器中引入门控卷积神经网络(GCNN),帮助ACGAN模型捕捉到更精确的数据特征,从而提高攻击成功率。最后,引入感知损失函数,最小化模型输出与目标输出在语音特征表示上的差异,提高生成样本的听觉质量。实验结果表明,在有目标攻击中相较于现有方法,ASR提高了1.5%,SNR和PESQ分别提高了10.5%和11.1%,证明了ACGAN在对抗样本生成领域的有效性和潜力。