基于同步双向A星和灰狼优化的多点巡航规划
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院;2.安徽建筑大学电子与信息工程学院;3.国防科技大学气象海洋学院

作者简介:

通讯作者:

中图分类号:

TP391.9, TN96

基金项目:

国家自然科学基金资助项目(No.41775165,No.41775039);安徽省高校杰出青年科研项目(2023AH020022);江苏省研究生科研与实践创新计划项目(KYCX24_1499)


Multi-purpose cruise path planning based on the two-way A-star and the gray wolf algorithms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人艇多目标点巡航路径规划问题,本文提出了一种基于同步双向A星算法与灰狼优化算法结合的路径规划方法。首先,对传统A星算法进行了改进,通过引入同步双向搜索策略和动态权重调整,减少了路径冗余点和算法计算时间。然后,将巡航路径规划问题转化为经典旅行商问题,并应用改进的灰狼优化算法进行求解,以获得最优巡航路径。实验结果表明,本文提出的方法在路径规划的总距离、转弯次数上,均优于传统方法,能够有效提升无人艇的巡航效率和安全性,为无人艇多目标点巡航任务提供了一种可靠的解决方案。

    Abstract:

    A path planning method based on an improved synchronous bidirectional A-star algorithm and grey wolf optimization algorithm is proposed for the multi-objective cruising path planning problem of unmanned boats. Firstly, the traditional A-star algorithm has been improved by introducing a synchronous bidirectional search strategy and dynamic weight adjustment, reducing path redundancy points and algorithm computation time. Then, the cruise path planning problem is transformed into a classic traveling salesman problem and solved using an improved grey wolf optimization algorithm to obtain the optimal cruise path. The experimental results show that the method proposed in this paper is superior to traditional methods in terms of total distance, number of turns, and computation time in path planning. It can effectively improve the cruising efficiency and safety of unmanned boats and provide a reliable solution for multi-target point cruising tasks of unmanned boats.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-28
  • 最后修改日期:2024-11-14
  • 录用日期:2024-11-18
  • 在线发布日期:
  • 出版日期:
文章二维码