基于多传感信息融合的跌倒监测系统开发
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学 机电工程学院;2.北京遥感设备研究所

作者简介:

通讯作者:

中图分类号:

TN87;TP212

基金项目:


Development of a fall detection system based on multi-sensor information fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前跌倒检测系统存在的检测准确率不高、实时性差等问题,设计了一种基于多传感信息融合的跌倒监测系统。该系统以 ESP32 微处理器为核心,利用智能手机内置的传感器、压力薄膜传感器以及 MPU6050 传感器进行数据采集,并通过小程序界面实时显示健康数据,提供监测和预警功能。 提出了一种云边协同的联合判别跌倒检测方法,该方法结合了本地的多级阈值算法和云端的改进SSA-LSTM-Transformer 算法和数据融合权重,算法经过公开数据集验证,准确率达到99.13%。最后,通过实验进行系统验证,实验结果表明,系统的跌倒检测准确率为 97.67%,能够有效检测跌倒行为并实时定位和预警。

    Abstract:

    To address the issues of low detection accuracy and poor real-time performance in current fall detection systems, a fall monitoring system based on multi-sensor information fusion has been designed. The system is centered around the ESP32 microprocessor and utilizes sensors embedded in smartphones, pressure film sensors, and MPU6050 sensors for data collection. Health data is displayed in real-time through a mini-program interface, providing monitoring and alert functions. A collaborative cloud-edge fall detection method has been proposed, combining a local multi-threshold algorithm with an improved SSA-LSTM-Transformer algorithm and data fusion weights in the cloud. This algorithm has been validated on a public dataset, achieving an accuracy rate of 99.13%. Finally, system validation was performed through experiments, and the results showed that the system"s fall detection accuracy is 97.67%. It effectively detects falls and provides real-time positioning and alerts.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-29
  • 最后修改日期:2024-10-24
  • 录用日期:2024-10-25
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知