摘要:由于水体特性对光的吸收和散射作用,水下图像通常呈现细节模糊、分辨率低等问题,为提升水下图像的清晰度,提出一种基于CBAM-SRResNet的水下图像超分辨率重建方法。该方法将混合注意力机制引入到深度残差网络中,从而提高水下图像的清晰度。其次,引入结构相似性损失函数,从而能够更好地保护图像内容,提高图像质量,使得训练结果更加符合人类视觉感知。实验结果显示,基于CBAM-SRResNet的水下图像超分辨率重建方法能够有效地处理水下图像模糊、分辨率低等问题,在不同数据集上与其他多种水下图像重建方法相比,该方法在PSNR上提高了0.69 dB ~ 2.43 dB,在SSIM上提高了2.66% ~ 7.17%,在各项性能指标上均表现优异。