基于CBAM-SRResNet的水下图像超分辨率重建研究
DOI:
CSTR:
作者:
作者单位:

上海电力大学

作者简介:

通讯作者:

中图分类号:

TP391; TN911.73

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on underwater image super-resolution reconstruction based on improved SRResNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于水体特性对光的吸收和散射作用,水下图像通常呈现细节模糊、分辨率低等问题,为提升水下图像的清晰度,提出一种基于CBAM-SRResNet的水下图像超分辨率重建方法。该方法将混合注意力机制引入到深度残差网络中,从而提高水下图像的清晰度。其次,引入结构相似性损失函数,从而能够更好地保护图像内容,提高图像质量,使得训练结果更加符合人类视觉感知。实验结果显示,基于CBAM-SRResNet的水下图像超分辨率重建方法能够有效地处理水下图像模糊、分辨率低等问题,在不同数据集上与其他多种水下图像重建方法相比,该方法在PSNR上提高了0.69 dB ~ 2.43 dB,在SSIM上提高了2.66% ~ 7.17%,在各项性能指标上均表现优异。

    Abstract:

    Due to the absorption and scattering of light by water characteristics, underwater images usually present problems such as blurred details and low resolution. In order to improve the clarity of underwater images, an underwater image super-resolution reconstruction method that improves SRResNet is proposed. This method introduces the hybrid attention mechanism into the deep residual network to enhance the clarity of underwater images. Secondly, the structural similarity loss function is introduced to better protect image content, improve image quality, and make the training results more consistent with human visual perception. Experimental results show that the underwater image super-resolution reconstruction method based on improved SRResNet can effectively deal with problems such as blurred underwater images and low resolution. Compared to various other underwater image reconstruction methods on different datasets, this method improved the PSNR by 0.69 dB to 2.43 dB and the SSIM by 2.66% to 7.17%, demonstrating superior performance across all metrics.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-30
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-20
  • 在线发布日期:
  • 出版日期:
文章二维码