基于改进YOLOv8光伏板缺陷检测算法
DOI:
作者:
作者单位:

常州大学

作者简介:

通讯作者:

中图分类号:

TK514;TN98;TP391.4

基金项目:

国家自然科学基金项目号:62301086,项目名称:说话人-机器人联合跟踪中观测融合规律及分布式声传感器校准方法研究


Based on the improved YOLOv8 photovoltaic panel defect detection algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的分布式光伏电池板缺陷检测精度低、计算量高、参数量大以及复杂背景多变等因素导致的误检、漏检问题,提出了一种改进的轻量级YOLOv8分布式光伏电池板缺陷检测算法。采用高效轻量级的StarNet网络架构作为特征提取网络,减少计算成本和参数量,实现高效率和高性能之间平衡; 设计SPPF-AM模块,增强了模型对空间信息的感知能力,有效应对不同尺度的目标;加入三元组注意力机制Triplet,有效地提取多尺度目标特征,提升模型的表征能力和任务性能;设计C2f_DSConv2D结合可变形卷积取代原网络中的C2f,以较低的存储和较高的计算速度,从而提高缺陷检测模型的效率;在特征融合网络中引入空间上下文感知模块SCAM,减少噪声影响,有效抑制图像中的噪声,抑制无关背景信息的干扰。设计ECIoU替换CIoU,增强边界框损失的拟合能力,加快网络模型的收敛速度。实验结果表明:改进后的YOLOv8模型参数量下降35%,计算量下降29.6%,检测精度达到了90.1%,mAP@50从85.9%提升到了89.7%,提升了4.2%。改进后模型在参数量、计算量下降的情况下检测精度也有一定的提升。所提出的改进算法在缺陷检测任务中表现出了较好的性能,有效增强了光伏电池板缺陷检测模型的检测性能。

    Abstract:

    To address the issues of low detection accuracy, high computational load, large parameter size, and complex variable backgrounds in existing distributed photovoltaic panel defect detection, we propose an improved lightweight YOLOv8 defect detection algorithm for distributed photovoltaic panels. We adopt the efficient lightweight StarNet architecture as the feature extraction network to reduce computational costs and parameter size, achieving a balance between high efficiency and high performance. The SPPF-AM module is designed to enhance the model's spatial information perception capability, effectively handling targets of different scales. We incorporate the Triplet attention mechanism to effectively extract multi-scale target features, improving the model's representation ability and task performance. The C2f_DSConv2D, which combines deformable convolution, replaces the original C2f in the network, improving defect detection efficiency with lower storage and higher computation speed. A spatial context-aware module (SCAM) is introduced in the feature fusion network to reduce noise impact and effectively suppress irrelevant background interference. We design ECIoU to replace CIoU, enhancing the fitting ability of the bounding box loss and accelerating the network's convergence speed. Experimental results show that the improved YOLOv8 model reduces parameter size by 35% and computational load by 29.6%, achieving a detection accuracy of 90.1%, with mAP@50 increasing from 85.9% to 89.7%, an improvement of 4.2%. The improved model demonstrates a certain enhancement in detection accuracy while reducing parameter size and computational load. The proposed improved algorithm demonstrated good performance in defect detection tasks, effectively enhancing the detection capability of the photovoltaic panel defect detection model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-31
  • 最后修改日期:2024-11-10
  • 录用日期:2024-11-12
  • 在线发布日期:
  • 出版日期: