改进YOLOv8的光伏电池缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

天津职业技术师范大学自动化与电气工程学院 天津

作者简介:

通讯作者:

中图分类号:

TN41

基金项目:

天津市教委科研计划项目(2022ZD036)


Improved photovoltaic cell defect detection for YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏电池缺陷检测在复杂背景下存在的误检、漏检等问题,提出了一种基于改进YOLOv8的光伏电池缺陷检测算法。首先,采用双向特征金字塔网络作为特征融合机制,通过自顶向下和自底向上的路径,实现多尺度特征的有效融合;其次,在颈部网络引入上下文聚合模块,使用不同空洞卷积速率的空洞卷积获取不同感受野的上下文信息,帮助模型更精准地识别微小目标,进而提升模型的目标检测性能;最后,优化边界框损失函数,并不断调试其权重因子,提高模型的收敛速度与效率。实验结果表明,与YOLOv8算法检测网络相比,本文算法的召回率和平均精确度均值分别提高了10.4%、1.8%,检测帧率达到270帧/s,保证了实时检测和后续部署的轻量化要求,改进后的算法能在复杂背景下对光伏电池的缺陷进行鲁棒检测。

    Abstract:

    Aiming at the problems of false detection and missing detection in the complex background of photovoltaic cell defect detection, an improved YOLOv8 based photovoltaic cell defect detection algorithm was proposed. Firstly, the bidirectional feature pyramid network is used as the feature fusion mechanism to achieve multi-scale feature fusion through top-down and top-down paths. Secondly, the context aggregation module is introduced into the neck network, and the context information of different receptive fields is obtained by using the cavity convolution of different cavity convolution rates, which helps the model to identify small targets more accurately, and thus improves the target detection performance of the model. Finally, the boundary frame loss function is optimized and its weight factor is adjusted continuously to improve the convergence speed and efficiency of the model. The experimental results show that compared with the detection network of YOLOv8 algorithm, the recall rate and average accuracy are respectively increased by 10.4% and 1.8%, and the detection frame rate reaches 270 frames /s, ensuring the lightweight requirements of real-time detection and subsequent deployment. The improved algorithm can carry out robust detection of photovoltaic cell defects under complex background.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-11-01
  • 录用日期:2024-11-06
  • 在线发布日期:
  • 出版日期:
文章二维码