基于改进YOLOv8的轻量化皮革缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.长春理工大学人工智能学院;2.长春理工大学;3.长春理工大学计算机科学技术学院;4.无

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

中山市科技局引进科研创新团队项目


Lightweight leather defect detection method based on improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决YOLOv8参数量过大影响检测速度等问题,本文以汽车座椅皮革为样本对汽车座椅表面进行缺陷检测,提出了一种轻量化的基于YOLOv8框架的皮革缺陷检测算法。首先,将YOLOv8原本的主干网络替换成轻量化网络StarNet,StarNet通过星型运算实现了高维和非线性特征空间的映射,从而在紧凑的网络结构和较低的能耗下展示了出色的性能和低延迟。其次,将原本的检测头替换成了轻量级共享卷积检测头(LSCD),通过使用共享卷积,可以大幅减少参数数量,使得模型更轻便,以便于在资源受限的设备上部署。最后,将颈部网络的C2f模块替换成C2f_Star模块,在网络更加轻量化的同时,将不同尺度的特征图进行融合,提高目标检测的准确性和鲁棒性。在自制的HSV-Leather数据集上对模型进行实验验证,结果表明,改进后的YOLOv8-Leather检测模型性能优于YOLOv8n模型。对比YOLOv8n模型,改进后的模型在参数量上降低了57%,检测速度提升了20%,模型权重降低了52%,运算量降低了53%。实验验证了改进后的模型在解决皮革表面缺陷检测问题上的可行性。

    Abstract:

    In order to solve the problems such as the large amount of YOLOv8 parameters affecting the detection speed, this paper proposes a lightweight leather defect detection algorithm based on the YOLOv8 framework by using automotive seat leather as a sample for defect detection on the surface of automotive seats. Firstly, the original backbone network of YOLOv8 is replaced with the lightweight network StarNet, which achieves the mapping of high-dimensional and nonlinear feature spaces through star arithmetic, thus demonstrating impressive performance and low latency with a compact network structure and low energy consumption. Second, the original detection head is replaced with a lightweight shared convolutional detection head (LSCD), which allows for a significant reduction in the number of parameters through the use of shared convolution, making the model lighter so that it can be easily deployed on resource-constrained devices. Finally, the C2f module of the neck network is replaced by the C2f_Star module, which fuses feature maps of different scales while the network is more lightweight to improve the accuracy and robustness of target detection. Experimental validation of the model on the home-made HSV-Leather dataset shows that the improved YOLOv8-Leather detection model outperforms the YOLOv8n model. Compared to the YOLOv8n model, the improved model reduces the number of parameters by 57%, improves the detection speed by 20%, reduces the model weights by 52%, and reduces the computation by 53%. The experiment verifies the feasibility of the improved model in solving the problem of leather surface defect detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-11-15
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码