基于AFE-YOLOv7模型的航空保险丝绕向识别方法
DOI:
作者:
作者单位:

1.中国民航大学工程技术训练中心 天津;2.中国民航大学电子信息与自动化学院 天津

作者简介:

通讯作者:

中图分类号:

V229.1;TN98

基金项目:

基金项目:国家重点研发计划基金(2023YFB4302404)资助项目


Aviation lock-wire twisting direction identification method based on AFE-YOLOv7 model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对典型维修场景中人工目视检查航空保险丝绕向效率低、标准不一致的问题,构建了航空保险丝绕向自动检测模型AFE-YOLOv7。以YOLOv7作为基本模型,将卷积块注意力机制CBAM集成到SPPCSPC空间池化金字塔模块,增强网络对不同通道间信息和空间信息的关注能力;在颈部网络和头部预测网络之间嵌入CA坐标注意力模块,增强网络对航空紧固件保险丝绕向方向和位置信息的感知能力;优化边界框损失函数为Focal-EIoU Loss,提高模型的鲁棒性。采用自建的航空保险丝绕向数据集,开展AFE-YOLOv7模型的对比和消融实验,结果表明,AFE-YOLOv7达到了83.33%的最高精度,相比YOLOv7在精确度、召回率及mAP指标上分别提高了7.67%、8.68%及10.25%;与YOLOv5s等广泛使用的目标检测方法相比,能够更好地适应多场景下的保险丝绕向检测,30.1帧/s的运行速度满足实时检测要求,推动了智慧民航的建设。

    Abstract:

    Aiming at the problems of low efficiency and inconsistent standards in manual visual inspection of aviation lock-wire twisting direction in typical maintenance scenarios, an automatic detection model AFE-YOLOv7 is constructed. Using YOLOv7 as the basic model, the convolutional block attention mechanism CBAM is integrated into the SPPCSPC spatial pooling pyramid block to enhance the network's ability to pay attention to information between different channels and spatial information; Embedding a CA coordinate attention block between the neck network and the head prediction network to enhance the network's perception of the direction and position information of aviation fastener lock-wire; Optimizing the bounding box loss function to Focal-EIoU Loss to improve the robustness of the model. Using a self-built aviation lock-wire twisting directional dataset, the comparative and ablation experiments are conducted on the AFE-YOLOv7 model. The results show that AFE-YOLOv7 achieves the highest accuracy of 83.33%, and compared to YOLOv7, the proposed model has improved accuracy, recall, and mAP values by 7.67%, 8.68%, and 10.25%, respectively; Compared with widely used object detection methods such as YOLOv5s, it can better adapt to lock-wire twisting direction detection in multiple scenarios, with a running speed of 30.1 frames per second, meeting real-time detection requirements, promoting the construction of smart civil aviation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-04
  • 最后修改日期:2024-11-10
  • 录用日期:2024-11-11
  • 在线发布日期:
  • 出版日期: