改进YOLOv8的城市行车道路障碍物检测算法研究
DOI:
CSTR:
作者:
作者单位:

西华大学 电气与电子信息学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

四川省科技厅应用基础研究项目:2019YJ0455;西华大学研究生科创竞赛项目,编号:YK20240002


Research on improved YOLOv8 urban driving road obstacle detection algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前城市道路复杂环境下障碍物检测精度不足、检测速度慢、模型参数量大和小目标障碍物检测效果不佳的问题,提出一种改进的YOLOv8n轻量级城市行车道路障碍物检测算法。首先,制作MRObstacle城市道路障碍物目标检测数据集,扩展了障碍物检测种类与数量;其次,设计全新的SPS_C2f改进主干网络,降低网络参数量与提升检测速度,添加M_ECA注意力模块至网络的Neck部分,提升网络检测速度与特征表达能力;再次,融合BiFPN特征金字塔和添加小目标检测头,更好地捕捉小尺寸障碍物的特征;最后,使用可优化边界框宽度与高度值的损失函数MPDIoU,提升网络边界框回归性能。相比于原YOLOv8n算法,该算法的mAP0.5指标提升2.04%,达到97.12%;FPS值提升12.08帧每秒,达到107.45帧每秒;网络参数量减少10%,降低至2.73MB。该算法在减少参数量的同时提高了检测精度和速度,可更好应用于城市行车道路障碍物检测任务。

    Abstract:

    Aiming at the current problems of insufficient obstacle detection accuracy, slow detection speed, large number of model parameters and poor detection of small target obstacles in the complex environment of urban roads, an improved YOLOv8n lightweight urban driving road obstacle detection algorithm is proposed. Firstly, the MRObstacle urban road obstacle target detection dataset is produced to extend the types and numbers of obstacle detection; secondly, a new SPS_C2f backbone network is designed to improve the backbone network, to reduce the number of network parameters and to improve the detection speed, and the M_ECA attention module is added to the Neck portion of the network, to improve the network detection speed and the feature expression ability; thirdly, the BiFPN is integrated with a feature pyramid and a small target detection algorithm is added to the network. feature pyramid and adding a small target detection head to better capture the features of small-sized obstacles; finally, using the loss function MPDIoU that optimises the values of the bounding box width and height to improve the performance of the network bounding box regression. Compared with the original YOLOv8n algorithm, the mAP0.5 metric of this algorithm is improved by 2.04% to 97.12%, the FPS value is improved by 12.08 frames per second (fps) to 107.45 fps, and the volume of the network parameter is reduced by 10% to 2.73 MB.This algorithm improves the detection accuracy and speed while decreasing the number of parameters, and it can be better applied to the urban road obstacle detection task.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:2024-11-14
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码