基于多目标跟踪优化的路口车辆轨迹提取方法*
DOI:
CSTR:
作者:
作者单位:

1.中国人民公安大学 交通管理学院;2.公安部 道路交通安全研究中心;3.中国人民公安大学

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

国家重点研发计划(2023YFB4302701);公安部技术研究计划项目(2022JSZ15)


Vehicle trajectory extraction method at intersection based on multi-target tracking optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为应对传统方法研究车辆轨迹存在精度和效率局限的问题,加快推进道路交通数字化治理模式,本文提出了一种基于多目标跟踪优化的路口车辆轨迹提取方法。首先,基于YOLOv8s算法框架,引入多分支卷积模块并设计了一种结合标准卷积与深度可分离卷积的图像处理方法,以提高模型对不同场景的鲁棒性并保持帧率稳定。然后,通过精确量化角度差异和距离损失,改进了DeepSORT算法的损失函数,以提高模型的收敛速度和处理不规则物体的准确度。最后,通过推导出像素坐标系与真实世界坐标系的转换关系,确保了车辆轨迹的准确提取。实验结果表明,改进模型较原模型mAP、召回率和MOTA分别提升了2.9%、5.6%和0.7%,编码变换次数(IDS)下降64%,在检测的同时能够保持帧率稳定,能够准确提取车辆在监控录像中的轨迹信息。这对于深入研究车辆特性和道路交通风险提供了方法支撑,具有较高实战应用价值。

    Abstract:

    To address the problems of accuracy and efficiency limitations in traditional methods of studying vehicle trajectories and accelerate the promotion of digital road traffic management, this paper proposes a vehicle trajectory extraction method at intersections based on multi-target tracking optimization. First, based on the YOLOv8s algorithm framework, a multi-branch convolution strategy was introduced and an image processing method combining standard convolution and depthwise separable convolution was designed to improve the robustness of the model to different scenes and maintain a stable frame rate. Then, the loss function of the DeepSORT algorithm is improved by accurately quantifying the angle difference and distance loss to increase the convergence speed of the model and the accuracy of handling irregular objects. Finally, the accurate extraction of vehicle trajectories is ensured by deriving the conversion relationship between the pixel coordinate system and the real-world coordinate system. The experimental results show that the improved model has improved mAP, recall rate and MOTA by 2.9%, 5.6% and 0.7% respectively compared with the original model, and the number of encoding transformations (IDS) has decreased by 64%. The frame rate can be kept stable during detection. And by deriving the conversion relationship between the pixel coordinate system and the real-world coordinate system, the vehicle"s trajectory information in the surveillance video can be accurately extracted. This provides methodological support for in-depth research on vehicle characteristics and road traffic risks, and has high practical application value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-14
  • 最后修改日期:2024-11-18
  • 录用日期:2024-11-18
  • 在线发布日期:
  • 出版日期:
文章二维码