基于改进YOLOv8的排水管网缺陷检测*
DOI:
CSTR:
作者:
作者单位:

河海大学信息科学与工程学院 常州 213200

作者简介:

通讯作者:

中图分类号:

TP391.41;TN919.5

基金项目:

住房和城乡建设部2022年科学技术计划项目(2022-K-165);中国建筑第七工程局有限公司局课题(CSCEC7b-2022-Z-5);中国建筑股份有限公司2023年度科技研发课题(CSCEC-2023-Z-10)


Research on defect detection of drainage pipeline network based on improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对城市排水管道缺陷易受背景干扰、特征尺度多变以及现有检测模型存在检测准确率低、误检率高等问题,本文提出了一种基于改进YOLOv8的缺陷检测算法。首先,设计DSK模块并嵌入主干网络的C2f模块中以扩大感受野,提高模型对多尺度缺陷特征的提取能力;其次,引入Slim-neck网络结构对颈部网络进行改进,对缺陷特征信息进行有效利用和融合,并有助于实现模型的轻量化;最后,采用FocalEIOU损失函数以更好地提高对较小缺陷目标的检测性能和模型的收敛速度。在管道缺陷数据集上的实验结果表明,本文改进的算法在70.4帧/s的检测速率下,mAP达到了67.5%,相比于原始YOLOv8算法,mAP值和检测速率分别提升了3.8%和1.7帧/s,表现出了良好的检测性能。针对实际应用目的,本文基于改进算法开发了一款能够实时检测管道缺陷的系统软件,通过实际项目检测,验证了本文改进的算法能够满足城市排水管道缺陷检测任务中高精度、实时检测的需求。

    Abstract:

    Addressing the issues of urban drainage pipeline defects being susceptible to background interference, the variability of characteristic scales, and the low detection accuracy and high false positive rate of existing detection models, this paper presents an improved defect detection algorithm based on YOLOv8. Initially, the DSK module is designed and embedded within the C2f module of the backbone network to expand the receptive field and improve the ability to extract multi-scale defect features. Subsequently, the Slim-neck network structure is introduced to refine the neck network, effectively utilizing and fusing defect feature information, which also contributes to the lightweightification of the model. Finally, the FocalEIOU loss function is adopted to enhance the detection performance for smaller defect targets and the convergence speed of the model. Experimental results on a pipeline defect dataset indicate that the proposed improved algorithm achieves a mean Average Precision (mAP) of 67.5% at a detection rate of 70.4 frames per second. Compared to the original YOLOv8 algorithm, the mAP value and detection speed are respectively increased by 3.8% and 1.7 frames per second, demonstrating superior detection performance. For the purpose of practical application, this paper has developed a system software capable of real-time detection of pipeline defects based on an improved algorithm. Through actual project detection, the enhanced algorithm proposed in this paper has been validated to meet the requirements of high precision and real-time detection for the task of urban drainage pipeline defect inspection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-19
  • 最后修改日期:2024-12-12
  • 录用日期:2024-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知