聚焦边缘与多尺度特征的轻量化违禁品检测算法
DOI:
CSTR:
作者:
作者单位:

河南理工大学电气工程与自动化学院 焦作 454000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

河南省高校基本科研业务费专项资金资助(NSFRF220444);河南省科技攻关项目(232102210040)


A lightweight contraband detection algorithm focusing on edge and multi-scale Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对X射线安检图像中背景复杂、尺度多变、小尺寸目标难以检测等挑战,提出一种聚焦边缘与多尺度特征的轻量化违禁品检测算法LEM-YOLO。首先,设计轻量化边缘特征增强模块LEFE以构建EFE_C2f,增强模型边缘特征提取能力。其次,设计高效多级特征融合金字塔网络EM-FPN,利用动态上采样Dysample和层次尺度特征金字塔网络HS-FPN,增强多尺度特征融合并减少计算冗余,同时采用动态特征编码模块DFE,保留小尺寸目标的全局信息。最后,使用Shape-IoU作为边界框回归损失函数,聚焦边框形状和自身尺度,提升目标定位精度。实验结果表明,在公开数据集SIXray上,LEM-YOLO的mAP达到了94.63%,比原算法提升了2.56%,同时模型体积下降了50.67%,与同类算法相比能更好满足违禁品检测场景的需求。

    Abstract:

    To address challenges such as complex backgrounds, varying scales, and the difficulty of detecting small objects in X-ray security images, we propose a lightweight contraband detection algorithm named LEM-YOLO, which focuses on enhancing edge and multi-scale features. First, a Lightweight Edge Feature Enhancement module (LEFE) is designed to construct the EFE_C2f, enhancing the model"s capability to extract edge features. Next, we develop an Efficient Multi-level Feature Fusion Pyramid Network (EM-FPN) that utilizes Dynamic Upsampling (Dysample) and the Hierarchical Scale Feature Pyramid Network (HS-FPN) to enhance multi-scale feature fusion and reduce computational redundancy. Additionally, a Dynamic Feature Encoding module (DFE) is employed to preserve global information for small-sized objects. Finally, Shape-IoU is used as the bounding box regression loss function, focusing on the shape and scale of the bounding boxes to improve object localization accuracy. Experimental results on the publicly available SIXray dataset show that LEM-YOLO achieves a mean Average Precision (mAP) of 94.63%, which is a 2.56% improvement over the original algorithm. Furthermore, the model size is reduced by 50.67%, making it better suited for contraband detection scenarios compared to similar algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:2024-11-26
  • 录用日期:2024-12-12
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知