摘要:为解决阿尔茨海默病(AD)患者大脑结构性核磁共振影像(sMRI)病变细微复杂和空间异质性分布引起的病症诊断准确率低的问题,提出了一种结合卷积神经网络(CNN)和Transformer优势的混合架构,用于AD病症诊断。首先,设计了多视图特征编码器,通过构造融合混合注意力机制的视图局部特征提取器分支,从sMRI的冠状面、矢状面和轴向面方向提取潜在互补信息,并通过多视图信息交互学习策略增强病灶区域的语义表征。其次,设计了级联式多尺度融合子网络,逐层融合多尺度特征图以生成更丰富判别信息。最后,利用Transformer编码器建模了全脑sMRI的全局特征表示。在阿尔茨海默病神经影像倡议(ADNI)数据集上的结果显示,本方法在AD分类和轻度认知障碍(MCI)转换预测任务的准确率分别达到了94.05%和81.59%,优于多种现有方法。