基于阶段特征融合的图像融合行人检测
DOI:
CSTR:
作者:
作者单位:

河北工业大学电子信息工程学院 天津

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(51977059)、河北省自然科学基金(E2020202042)


Image Fusion Pedestrian Detection Based on Stage Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前可见光与红外图像融合行人检测算法中存在特征不平衡与特征融合不充分等问题。针对上述问题,提出一种分阶段特征融合可见光-红外图像的行人检测网络MIFNet。构建的双流网络同时处理可见光与红外输入;设计模态间信息融合模块,改变网络的结构减少特征不平衡造成的影响,提取-注入结构在特征提取的过程中自动学习如何提取多模态全局信息并将其有效地注入可见光与红外特征中,提升网络鲁棒性与特征融合效果。设计并嵌入特征增强融合模块,增强两种模态的独特信息,进一步提升特征融合效果。实验结果表明,算法漏检率仅为9.74%,与基线算法相比降低了6%,有效的提升了算法的检测性能。

    Abstract:

    There are problems such as feature imbalance and insufficient feature fusion in the visible and infrared image fusion pedestrian detection algorithm. To address the above problems, we propose a multispectral pedestrian detection network MIFNet with phased feature fusion, a dual-stream network that handles both visible and infrared inputs, an intermodal information fusion module that changes the structure of the network to reduce the impact of feature imbalance, and an extraction-injection structure that automatically learns how to extract multimodal global information during the process of feature extraction and injects it into the visible and infrared features efficiently, which improves the robustness of the network and feature fusion effect. The feature enhancement fusion module is designed and embedded to enhance the unique information of the two modalities to further improve the feature fusion effect. The experimental results show that the leakage rate of the algorithm is only 9.74%, which is 6% lower th

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-03
  • 最后修改日期:2024-11-21
  • 录用日期:2024-11-22
  • 在线发布日期:
  • 出版日期:
文章二维码