用于运动想象脑电信号分类的深度学习网络
DOI:
CSTR:
作者:
作者单位:

新疆大学智能制造现代产业学院

作者简介:

通讯作者:

中图分类号:

TN91

基金项目:

国家自然科学基金(52365040)项目资助


Deep Learning Networks for Motor Imagery EEG Signal Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运动想象(MI)脑电信号由于包含较长、连续的特征值以及其本身较强的个体差异性和较低的信噪比,导致其识别较为困难。本研究提出一种结合卷积神经网络(CNN)与Transformer的模型,旨在有效解码和分类运动想象脑电信号。该方法以原始多通道运动想象脑电信号作为输入,首先在第一个时间卷积层对信号的时域进行卷积操作,随后在第二个空间卷积层对信号的空域进行卷积操作,从而学习整个一维时间和空间卷积层的局部特征。其次,通过沿时间维度的平均池化层平滑时间特征,并将每个时间点的所有特征通道传递到注意力机制中,以提取局部时间特征中的全局相关性。最后,采用基于全连接层的简单分类器模块对脑电信号进行分类预测。通过在公开的BCI竞赛数据集IV-2a和数据集IV-2b上的实验验证,结果显示该模型可以有效分类MI脑电信号,平均分类准确率可达80.95%和84.79%,相比于EEGNet网络,平均分类准确率分别提升了6.45%和4.31%,有效的提高了运动想象诱发电位信号的脑-机接口性能。

    Abstract:

    Motor imagery (MI) EEG signals are more difficult to recognize due to the inclusion of long, continuous eigenvalues as well as their own strong individual variability and low signal-to-noise ratio. In this study, we propose a model that combines a con-volutional neural network (CNN) with a Transformer, aiming to effectively decode and classify motor imagery EEG signals. The method takes the original multichannel motor imagery EEG signals as input, and learns the local features of the entire one-dimensional temporal and spatial convolutional layers by firstly performing a convolutional operation on the temporal domain of the signals in the first temporal convolutional layer, and then subsequently performing a convolutional operation on the null domain of the signals in the second spatial convolutional layer. Next, the temporal features are smoothed by averaging the pooling layers along the temporal dimension and passing all the feature channels at each time point to the attention mechanism to extract the global correlations in the local temporal features. Finally, a simple classifier module based on a fully connected layer is used to classify the EEG signals for prediction. Through experimental validation on the publicly available BCI competition dataset IV-2a and dataset IV-2b, the results show that the model can effectively classify MI EEG signals with average classification accuracies of up to 80.95% and 84.79%, which is an improvement of 6.45% and 4.31% in comparison to the EEGNet network, respectively, and effectively improves motor imagery evoked potential signals of the brain-computer interface performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-05
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-20
  • 在线发布日期:
  • 出版日期:
文章二维码