摘要:在交通标志识别应用中,待检测目标多为小目标,易出现漏检、误检等问题。针对这些问题,基于YOLOv8s算法设计了一种改进的交通标志识别算法,FKDS-YOLOv8s。使用FasterBlock重构C2f模块,形成新的轻量化模块C2f-Faster,既提升模型特征提取能力,又降低了计算开销;基于SENet和ResNeXt模型设计一种新的检测头Detect_SR,使模型能够有效地聚焦于小目标的关键特征;融入轻量且高效的动态上采样器DySample,显著减少了GPU内存消耗;通过增加上采样和Prediction输出层次,模型能够捕捉丰富的位置信息,有效解决了YOLOv8s模型在处理小目标时信息不足的问题;引入Shape-IoU损失函数,优化了原CIoU在边框回归中的不足;此外,在Neck部分融入了本文新设计的注意力机制DKN-Attention,在上采样和下采样过程中定位微小物体场景的注意力区域,提升了远处小型交通标志的特征提取和识别能力。实验在中国交通标志数据集TT100K上进行,结果表明,FKDS-YOLOv8s相比基准模型,在查准率(P)、查全率(R)和mAP50上分别提升了5.9%、4.2%和6.3%。较传统方法,FKDS-YOLOv8s在性能上表现出显著优势。