多策略改进的徒步优化算法及其应用
作者:
作者单位:

贵州财经大学数学与统计学院 贵阳 550025

中图分类号:

TP18;TN02

基金项目:

国家自然科学基金(12361106)、贵州省科技计划重点项目(黔科合基础-ZK[2023]重点003)、贵州省高层次创新型人才项目(黔科合平台人才-GCC[2023]006)资助


Multiple strategies improved hiking optimization algorithm and its application
Author:
Affiliation:

School of Mathematics and Statistics, Guizhou University of Finance and Economics,Guiyang 550025, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | | | |
  • 文章评论
    摘要:

    为了解决复杂数值优化问题,提出一种基于柯西逆累积分布算子和随机差分变异策略改进的徒步优化算法。该算法使用佳点集初始化种群,以此增加种群多样性;采用柯西逆累积分布算子,平衡全局搜索与局部开发能力;引入随机差分变异策略,降低过早陷入局部最优的风险。实验结果显示,该算法在CEC2017测试集上的平均性能优于8种对比算法。统计检验进一步证实了性能差异具有显著性。同时,从CEC2017测试集中选取9个有代表性的测试函数,通过对比试验,分别验证了该算法中三种改进策略的有效性。此外,将该算法应用到光伏模型参数辨识中,实现了较小的均方根误差2.43×10-3,为所有比较算法中的最优值。在另外两类工程设计问题中,该算法均取得了最小目标函数值,优于对比算法。综上所述,改进的徒步优化算法在全局搜索能力、收敛速度和精度方面表现出色,有效提升了解决复杂数值优化问题的性能。

    Abstract:

    To tackle complex numerical optimization problems, this paper proposes an improved hiking optimization algorithm based on Cauchy distribution operator and random differential mutation strategy (CDHOA). The algorithm enhances diversity through effective population initialization, balances global search with local exploitation using the inverse cumulative Cauchy distribution operator, and employs a random differential mutation strategy to boost exploitation and reduce local optima risks. Experimental results show the average performance of CDHOA on the CEC2017 test set is better than that of eight comparison algorithms. The statistical test further confirmed that the performance difference was significant. Nine representative test functions are selected from the CEC2017 test set, and the effectiveness of the three enhancement strategies in the algorithm is verified by comparative experiments. Additionally, it is applied to the parameter identification of photovoltaic model, and a small root mean square error of 2.43×10-3 is achieved, which has the best result of all comparison algorithms. In two kinds of engineering design problems, the algorithm achieves the minimum objective function value, which is better than the comparison algorithms. Overall,CDHOA performs well in global search ability, convergence speed and accuracy, which effectively improves the performance of solving complex numerical optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

徐明,王风富,龙文.多策略改进的徒步优化算法及其应用[J].电子测量技术,2025,48(3):60-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码