基于双向学习的弱监督阴影-对象实例检测
DOI:
CSTR:
作者:
作者单位:

贵州大学

作者简介:

通讯作者:

中图分类号:

TP394.1 TN911.73

基金项目:

贵州省基金(黔科合基础[2019]1063号),贵州大学引进人才科研项目(贵大人基合同字(2017)14号)


Weakly supervised shadow-object instance detection with bidirectional learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有阴影-对象实例检测网络都是基于掩码标签的全监督训练,但掩码标签标注难度和成本较高。仅利用边界框标签进行监督训练可以有效降低数据集的标注难度和成本,但弱监督会导致预测实例掩码精度降低。为了解决这一问题,首次利用弱监督方法进行阴影-对象实例检测,提出了一种基于双向学习结构的弱监督阴影-对象实例检测网络。首先,设计了教师-学生双向学习结构,利用教师网络预测的结果作为学生网络监督训练的的伪掩码标签,通过指数移动平均方法更新教师网络的参数的方法提高弱监督检测的精确度。其次,通过投影损失对预测掩码进行精准定位,并引入了能表征图像色彩先验信息的色彩相似性指标,结合交叉熵损失函数设计了色彩相似性损失函数,提高了整体网络的检测性能。为了验证所提方法的有效性和提高网络的鲁棒性,构建了一个阴影-对象实例检测数据集,并在该数据集与公开数据集SOBA上验证了本文网络的预测能力,平均精度(AP)值分别达到了53.3和51.5。

    Abstract:

    Current shadow-object instance detection methods rely on fully supervised training with mask labels. However, mask labeling is both complex and costly. Utilizing only bounding box labels for training can reduce annotation challenges and costs, but this weak supervision may decrease the accuracy of instance mask predictions. To address this issue, weakly supervised methods were first utilized for shadow-object instance detection. A weakly supervised shadow-object instance detection approach with bidirectional learning network is proposed. Firstly, a teacher-student bidirectional learning structure was designed, utilizing the predicted results of the teacher network as pseudo mask labels for the supervised training of the student network. The accuracy of weakly supervised detection was enhanced by updating the parameters of the teacher network using the exponential moving average method. Secondly, the prediction mask is precisely positioned using projection loss, and a color affinity index is introduced to represent the color prior information of the image. By integrating this with the cross-entropy loss function, a color affinity loss function is designed to enhance the network's overall detection performance. To verify the effectiveness of the proposed method and enhance the network's robustness, a shadow-object instance detection dataset was constructed. The predictive capability of the network was validated using both this dataset and the public dataset SOBA, with average precision values of 53.3 and 51.5, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-11
  • 最后修改日期:2024-12-05
  • 录用日期:2024-12-06
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知