曲线匹配矫正扩散网络的LDCT图像去噪
作者:
作者单位:

苏州大学光电科学与工程学院 苏州 215000

中图分类号:

TN95


Curve matching diffusion model for LDCT images denoising
Author:
Affiliation:

School of Optoelectronic Science and Engineering, Soochow University,Suzhou 215000, China

  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    低剂量CT检查的使用极大减少了CT检查的辐射剂量,但却导致了CT图像中噪声增加和伪影增多等一系列问题,从而降低了图像质量和准确性,影响医生在诊断过程中的判断。而近年来生成式模型在解决这一问题上表现出了其优秀的性能,然而生成模型在生成过程中仍存在着容易生成混淆和结构性不足的问题,为了解决这一问题,构建了一个条件扩散去噪网络模型,并在此基础上引入了可训练的曲线矫正模块来对不同噪声等级进行矫正处理,并入了联合损失函数。实验结果表明,所提出算法相较于对比算法取得了较优去噪结果,在数据集测试中得到了35.70的PSNR和0.912 8的SSIM,在所选取方法中获得最优效果,同时在不同剂量的低剂量CT图像中取得了较好的泛化性,可以保持较优秀的降噪水平。

    Abstract:

    The use of low-dose CT scans has significantly reduced radiation exposure during examinations. However, this reduction has led to increased noise and artifacts in CT images, compromising image quality and diagnostic accuracy, which can affect physicians′ judgment during the diagnostic process. Recent advancements in generative models have demonstrated excellent performance in addressing these issues. Nonetheless, these models still face challenges, such as generating confusion and structural deficiencies during the generation process. To tackle these problems, a conditional diffusion denoising network model has been developed. This model incorporates a trainable curve matching module to correct different noise levels and includes a joint loss function. Experimental results indicate that the proposed algorithm achieves superior denoising outcomes compared to comparative algorithms, with test results of PSNR 35.70 and SSIM 0.912 8 on the dataset, representing the optimal performance among the selected methods. Additionally, it demonstrates good generalization across low-dose CT images with varying radiation doses, maintaining excellent denoising levels.

    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏君陶,颜明轩,杨心齐,张晓俊,陶智.曲线匹配矫正扩散网络的LDCT图像去噪[J].电子测量技术,2025,48(3):138-144

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码