摘要:随着自动驾驶的迅速发展,对高精度车辆导航实时定位技术的需求日益迫切。在常用的GNSS/INS组合导航中,自适应卡尔曼滤波是一种常用的状态预测方法,然而,在复杂的动态环境下,其在应对GNSS多路径噪声和实时变化的过程噪声方面存在局限。针对这一问题,本文提出了一种自适应抗噪卡尔曼滤波算法,用于抑制GNSS测量噪声和动态过程噪声。该算法通过变分模态分解-小波去噪对原始GNSS测量数据进行预处理,提高了数据融合的输入精度;其次,在数据融合过程中,加入了随车辆环境实时变化的动态噪声缩放因子。通过以上两个去噪步骤,整体上有效抑制了噪声不确定性对导航精度的干扰。通过仿真模拟和真实车载实验验证了所提方法的有效性,与传统自适应卡尔曼滤波算法相比,本算法的位置估计和速度估计误差分别降低了37.7%和42.8%,显著提升了移动车辆速度和位置的高精度估计能力。