改进基于YOLOv8的轻量化钢材表面缺陷检测算法
作者:
作者单位:

辽宁石油化工大学人工智能与软件学院 抚顺 113001

中图分类号:

TP391.9;TN911

基金项目:

辽宁省教育厅高校基本科研项目(LJ212410148034)、辽宁省教育厅兴辽英才计划项目(XLYC1907166)、辽宁省教育厅科学研究基金(L2019027)项目资助


Lightweight improved YOLOv8n model for steel defect detection features
Author:
Affiliation:

School of Artificial Intelligence and Software,Liaoning Petrochemical University,Fushun 113001, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解决钢材表面缺陷检测模型参数量大、计算复杂度高以及对运算平台资源要求高的问题,提出了一种轻量化的改进算法。首先,使用ShuffleNetV2作为改进后的主干层,在降低模型复杂性和计算量上具有显著效果;其次,在SPPF模块后加入足够灵活和轻量的通道注意力机制(CA),同时使用双向特征金字塔网络(BiFPN)改善特征融合,提高了特征信息流动效率;最后,使用轻量级双卷积核(DualConv)替换C2f中的卷积层,通过分组卷积策略实现参数量的减少。实验结果表明,改进后的模型相比于原始的YOLOv8n,在保持检测精度的前提下,实现了轻量化。参数量为原来的56.2%,体积和计算量分别降至3.6 MB和4.8 GFLOPs,相比原模型分别降低了42.86%和41.47%,模型的轻量化降低了部署成本,适合实际部署和应用。

    Abstract:

    To address the issues of large parameter quantity, high computational complexity, and high resource demands on the computing platform for the steel surface defect detection model, a lightweight improved algorithm has been proposed. Firstly, using ShuffleNetV2 as the improved backbone layer has achieved remarkable results in reducing model complexity and computational load. Secondly, a sufficiently flexible and lightweight channel attention mechanism (CA) was incorporated after the SPPF module, while the bidirectional feature pyramid network (BiFPN) was utilized to enhance feature fusion, thereby improving the efficiency of feature information flow. Finally, the lightweight dual convolution kernel (DualConv) was employed to replace the convolution layer in C2f, and the parameter quantity was reduced through the grouping convolution strategy. Experimental results indicate that, compared with the original YOLOv8n, the improved model achieves lightweighting while maintaining detection accuracy. The parameter quantity is 56.2% of the original, and the volume and computational load have decreased to 3.6 MB and 4.8 GFLOPs, respectively, representing a reduction of 42.86% and 41.47% compared to the original model. The lightweighting of the model reduces the deployment cost and is suitable for practical deployment and application.

    参考文献
    相似文献
    引证文献
引用本文

刚帅,刘培胜,郭希旺.改进基于YOLOv8的轻量化钢材表面缺陷检测算法[J].电子测量技术,2025,48(3):74-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码