基于YOLOv8的输电线路绝缘子表面缺陷识别算法
DOI:
CSTR:
作者:
作者单位:

华北电力大学 计算机系

作者简介:

通讯作者:

中图分类号:

TM216;TN919.8

基金项目:

国家电网有限公司总部管理科技项目(5700-202340289A-1-1-ZN)


Surface defect detection algorithm of transmission line insulators based on YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,在模型的颈部网络增加GD机制,减少特征融合过程中信息的丢失,提升小目标检测能力;最后,采用ATFL分类损失函数,削弱复杂背景对小目标检测的干扰,引入PIOU边界框损失函数,提高识别精度,加快模型收敛速度。实验结果表明,该算法的mAP50达到94.1%,精确率达到92.5%,召回率达到91.3%,相较于基线模型分别提高了3.1%、0.7%、3.9%,且综合性能优于最近的YOLOv9s、YOLOv10s等代表性算法。

    Abstract:

    Aiming at the problems of complex image background and poor recognition of small defect targets in the current insulator surface defect recognition, a transmission line insulator surface defect recognition algorithm based on YOLOv8 is proposed. Firstly, the CAF module is introduced in the backbone network to enhance the model's analysis of complex image scenes and enhance the ability to extract global and local features; secondly, the GD mechanism is added to the neck network of the model to reduce the loss of information in the feature fusion process and improve the small target detection ability; finally, the ATFL classification loss function is used to weaken the interference of complex background on small target detection, and the PIOU bounding box loss function is introduced to improve the recognition accuracy and accelerate the model convergence speed. Experimental results show that the mAP50 of the algorithm reaches 94.1%, the precision rate reaches 92.5%, and the recall rate reaches 91.3%, which are 3.1%, 0.7%, and 3.9% higher than the baseline model, respectively, and the comprehensive performance is better than the recent YOLOv9s, YOLOv10s and other representative algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-04
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知