FDH-DETR工况场景工人行为及火灾检测算法
作者:
作者单位:

1.太原理工大学集成电路学院 太原 030600; 2.太原理工大学电子信息工程学院 太原 030600; 3.山西众鑫乐食汇食品有限公司 临汾 041000

中图分类号:

TP391.4;TN919.8

基金项目:

企业委托开发项目(RH24000012)资助


FDH-DETR worker behavior and fire detection algorithm in working condition
Author:
Affiliation:

1.School of Electronic Information and Optical Engineering, Taiyuan University of Technology,Taiyuan 030600, China; 2.School of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan 030600, China; 3.Shanxi Zhongxin Leshihui Food Co., Ltd.,Linfen 041000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对工厂时刻面临的安全生产问题,例如厂区车间内严禁烟火、需时刻关注工作人员的行为安全、恶劣工况场景下工人是否佩戴口罩等,提出了一个基于RT-DETR改进的工人行为及火灾检测算法FDH-DETR。首先,通过Deep Faster特征深度融合模块与FasterNet的融合,减少了算法的参数量和计算量;其次,通过DRBC3模块大小卷积核转换机制,减少了模型的推理成本;最后,通过HiLo-AIFI高低频尺度内特征交互模块,增强了对高低频特征的提取能力。实验结果表明,改进后的算法平均准确度达到了93.8%,参数量减少了31.6%,计算量减少了61.4%,FPS达到了150 fps,并在真实工况场景下进行推理实验,验证了算法的有效性。

    Abstract:

    Regarding the perennial safety production problems that factories constantly encounter, such as the strict prohibition of smoke and fire in the workshop area, the need for constant attention to the behavioral safety of workers, and whether workers wear masks in adverse working condition scenarios, an improved worker behavior and fire detection algorithm FDH-DETR based on RT-DETR was proposed. Firstly, through the fusion of the Deep Faster feature depth fusion module and FasterNet, the number of parameters and the amount of computation of the algorithm were reduced. Secondly, through the DRBC3 module size convolution kernel conversion mechanism, the inference cost of the model was decreased. Finally, through the HiLo-AIFI high-low frequency scale withinfeature interaction module, the extraction ability of high-low frequency features was enhanced. Experimental results indicate that the improved algorithm achieved an average accuracy of 93.8%, a reduction of 31.6% in parameters, a reduction of 61.4% in computation, and an FPS of 150 frames per second. Inference experiments were conducted in real working condition scenarios, verifying the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

董润华,常青,孔鹏伟,王耀力. FDH-DETR工况场景工人行为及火灾检测算法[J].电子测量技术,2025,48(3):145-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码