一种基于WiFi信道状态信息的课堂行为识别方法
作者:
作者单位:

内蒙古科技大学数智产业学院网络安全学院 包头 014010

中图分类号:

TP39;TN99

基金项目:

高校基本科研业务费项目(2024XKJX001)资助


A classroom behavior recognition method based on WiFi channel state information
Author:
Affiliation:

School of Digital and Intelligent Industry, School of Cyber Science and Technology, Inner Mongolia University of Science and Technology,Baotou 014010, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    学生课堂行为识别在提升教学质量方面具有重要意义。当前主流的研究大多基于视频或传感器技术,然而这些方法存在隐私侵犯、成本高昂等问题,制约了其广泛应用。为此,本文提出了一种基于WiFi CSI的学生课堂行为识别方法。该方法首先在真实教室环境中采集了4种典型课堂行为(举手、起立、坐下、翻书)的CSI信号;然后结合WiFi CSI数据特点,采用Hampel滤波和小波变换对CSI信号进行去噪处理,并设计主成分分析算法融合所有子载波特征。随后,根据融合特征设计局部异常因子检测算法截取CSI动作区间,并引入三维映射的方式将截取的CSI信号转换成振幅能量图;最后设计了一种基于残差网络的迁移学习模型,对振幅能量图数据集进行特征提取和分类识别。实验结果表明,该方法在阶梯教室和小教室中的准确率分别为98.89%和99.07%,并且在对不同人员的测试中均可达到98%以上,证明该方法具有较高的识别精度和较好的鲁棒性,为学生课堂行为识别的研究提供了一种新的思路。

    Abstract:

    Student classroom behavior recognition is important for improving the quality of teaching and learning. Most of the current mainstream research is based on video or sensor technologies, however, these methods suffer from privacy invasion and high cost, which constrain their wide application. Therefore, this paper proposes a method of student classroom behavior recognition based on WiFi CSI. This method first collected CSI signals for four typical classroom behaviors (hands up、stand up、sit down and turn over books) in a real classroom environment. Then combined with the characteristics of WiFi CSI data, Hampel filter and wavelet transform are used to denoise the CSI signal, and all subcarrier features are fused by designing principal component analysis algorithm. Subsequently, the CSI action intervals are intercepted according to the fusion features designing the local outlier factor detection algorithm, and the intercepted CSI signals are converted into amplitude energy maps by introducing three-dimensional mapping. Finally, the amplitude energy map dataset is feature extracted and classification recognized by designing a transfer learning model based on residual network. The experimental results show that the accuracy of the method is 98.89% and 99.07% in the step classroom and small classroom, and it can reach more than 98% in the test for different people. It is proved that the method has high recognition accuracy and good robustness, which provides a new idea for the research of student classroom behavior recognition.

    参考文献
    相似文献
    引证文献
引用本文

杨彦侃,马鑫宇,郁林.一种基于WiFi信道状态信息的课堂行为识别方法[J].电子测量技术,2025,48(3):118-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码