基于SRGAN-DAE的室内定位指纹生成
作者:
作者单位:

华北电力大学控制与计算机工程学院 北京 102206

中图分类号:

TP92;TN92

基金项目:

国家自然科学基金(62301220)项目资助


Indoor localization fingerprint generation based on SRGAN-DAE
Author:
Affiliation:

School of Control and Computer Engineering, North China Electric Power University,Beijing 102206, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于WiFi指纹数据库的室内定位技术因其高精度和易于部署的特点而备受关注,而离线指纹数据库的质量则是决定定位精度的关键因素。针对离线指纹数据库采集成本高的问题,提出了一种基于降噪自编码器超分辨率生成对抗网络的降噪指纹数据库增强模型(FASRGAN-DAE)。该方法通过增强稀疏指纹数据库,提高定位精度。具体而言,首先将指纹数据映射为相应的指纹图像;接着,生成器网络在删除批量归一化层(BN层)的基础上改进感知损失函数,生成高分辨率指纹图像,并通过降噪自编码器的隐藏层和输出层,以提高生成图像的质量,同时在判别器网络中,删除BN层并采用卷积层的输出作为输入图像的真实性评分,利用均方差损失函数优化判别器网络,以增强对真实和生成图像的区分能力;最终,通过映射模块将指纹图像还原为指纹数据,实现指纹数据库的增强。通过在真实地下停车场环境中进行定位实验,与原始指纹数据库相比,FASRGAN-DAE增强数据后将平均定位误差降低了5.69%。

    Abstract:

    Indoor location technology based on WiFi fingerprint database has attracted much attention because of its high precision and easy deployment, while the quality of offline fingerprint database is a key factor to determine the location accuracy. To solve the problem of high acquisition cost of offline fingerprint database, a denoising fingerprint database enhancement model (FASRGAN-DAE) based on denoising autoencoder super resolution generation adductive network is proposed. The method enhances the location accuracy by enhancing the sparse fingerprint database. Specifically, firstly, the fingerprint data is mapped to the corresponding fingerprint image; then, on the basis of deleting the batch normalization layer (BN layer), the generator network improves the perception loss function to generate high-resolution fingerprint images, and reduces the hidden layer and output layer of the autoencoder to improve the quality of the generated images. Meanwhile, in the discriminator network, the BN layer is deleted and the output of the convolutional layer is used as the authenticity score of the input image. The mean square error loss function is used to optimize the discriminator network to enhance the ability of distinguishing between real and generated images. Finally, the fingerprint image is restored to the fingerprint data through the mapping module to realize the enhancement of the fingerprint database. Through the localization experiment in the real underground parking lot environment, compared with the original fingerprint database, the average localization error was reduced by 5.69% after FASRGAN-DAE enhanced data.

    参考文献
    相似文献
    引证文献
引用本文

吕博,周蓉,张甜愉,浦梦杨.基于SRGAN-DAE的室内定位指纹生成[J].电子测量技术,2025,48(3):154-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码