基于迭代建模的滑窗主元分析故障检测方法
作者:
作者单位:

西安工业大学电子信息工程学院 西安 710021

中图分类号:

TP273;TN98

基金项目:

陕西省自然科学基础研究计划项目(2023-JC-YB-579)资助


Fault detection based on iterative modeling and sliding window principal component analysis
Author:
Affiliation:

School of Electronic Information Engineering,Xi′an Technological University,Xi′an 710021,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统主元分析(PCA)方法在工业过程故障检测中的高虚警率和故障检测不及时的问题,本研究提出了一种基于迭代建模的滑窗主元分析故障检测方法。为了提高故障检测实时性,在建模过程中,采用迭代方法逐步剔除PCA建模数据中的异常样本,优化PCA模型。为了降低虚警率,在检测过程中,采用滑动观测窗口统计异常样本数量,通过构造第二置信限检测故障。为了提高故障检测准确性,采用一种合成统计量作为检测指标,能够同时考虑主成分方向和残差空间的异常。为了验证本研究方法的有效性,分别采用数值算例和田纳西-伊斯曼(TE)过程进行了仿真实验,其中,数值算例的故障检测准确率达到89.20%,虚警率为1.33%;TE过程的故障检测准确率达到99.39%,虚警率为3.12%。

    Abstract:

    To address the high false alarm rate and delayed fault detection in traditional principal component analysis (PCA) methods for industrial process fault detection, this paper proposes an iterative modeling-based sliding window PCA fault detection method. To improve detection real-time performance, an iterative approach is used during the modeling process to progressively remove outlier samples from the PCA model data, optimizing the PCA model. To reduce the false alarm rate, a sliding observation window is employed to count the number of outlier samples, and a second confidence limit is constructed for fault detection. To enhance fault detection accuracy, a composite statistic is used as the detection index, which considers anomalies in both the principal component direction and the residual space. To validate the effectiveness of the proposed method, simulation experiments were conducted using numerical examples and the Tennessee-Eastman (TE) process. In the numerical examples, the fault detection accuracy reached 89.20% with a false alarm rate of 1.33%. For the TE process, the fault detection accuracy reached 99.39% with a false alarm rate of 3.12%.

    参考文献
    相似文献
    引证文献
引用本文

程为康,张家良.基于迭代建模的滑窗主元分析故障检测方法[J].电子测量技术,2025,48(3):92-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-03-20
文章二维码