双线性自注意力机制CAN总线入侵检测方法研究*
DOI:
CSTR:
作者:
作者单位:

1.揭阳职业技术学院实训与信息中心;2.华南理工大学机械与汽车工程学院

作者简介:

通讯作者:

中图分类号:

TN919

基金项目:

广东省科技厅特派员重点派驻任务(KTP20210400);广东省高等教育学会“十四五”规划高等教育研究课题(22GYB018)。


Study on Bilinear Self-Attention mechanism for CAN bus intrusion detection method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    控制器局域网络(CAN)总线广泛应用于工业数据采集、车联网等领域,对其安全入侵检测非常重要。为全面提升检测方法性能,提出一种双线性自注意力机制CAN总线入侵检测方法,首先基于堆叠集成思想利用DNN、CNN和LSTM模型提取深度学习层特征;随后通过双线性层分别提取自注意力机制Transformer与FNet特征,再将其与深度学习层特征残差连接融合;最后通过全连接层入侵检测预测,体现高准确率、检测率和良好泛化性特点。在Car_Hacking公开数据集上实验表明,准确率、精确率、召回率、F1值和AUC值分别达0.951、0.996、0.997、0.960和0.984,且随着训练轮数增加其准确率、损失值误差分别保持在5%、10%以内,本文方法优于其他比较方法。应用于物联网实验装置评估结果显示,本文方法在异常攻击识别检测率达99.23%,对于提高测控系统安全性能具有重要推广价值。

    Abstract:

    The CAN bus is widely used in industrial data acquisition, Internet of Vehicles, and other fields, making its security intrusion detection very important.To comprehensively enhance the performance of the detection method, a bilinear self-attention mechanism for CAN bus intrusion detection is proposed. Firstly, based on the idea of stacked integration, DNN, CNN, and LSTM models are used to extract and generate deep learning layer feature data;Then, bilinear layers are used to generate self-attention mechanism and FNet feature data separately, which are then fused with deep learning layer feature data through a residual connection layer, and intrusion detection prediction is performed through a fully connected layer, demonstrating high accuracy, detection rate, and good generalization characteristics.Experiments on the Car_Hacking public dataset show that the accuracy, precision, recall, F1 score, and AUC values are 0.951, 0.996, 0.997, 0.960, and 0.984, respectively, and as the number of training epochs increases, the accuracy and loss value error remain within 5% and 10%, respectively, indicating that this method outperforms other comparison methods.Application to IoT experimental devices evaluation shows that this method achieves a detection rate of 99.23% for abnormal attack identification, which has significant promotion value for enhancing the security performance of monitoring and control systems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-25
  • 最后修改日期:2024-12-11
  • 录用日期:2024-12-11
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知