查 询 高级检索+
共找到相关记录2条
    全 选
    显示方式:|
    • 基于改进YOLOv8n的钢材表面缺陷检测

      2024, 47(13):191-198.

      关键词:钢材;缺陷检测;YOLOv8n;全维动态卷积;渐进特征金字塔网络;Wise-IoUv3
      摘要 (105)HTML (0)PDF 9.96 M (171)收藏

      摘要:为解决钢材表面缺陷检测中面临的缺陷类型繁多、尺寸差异显著以及现有模型复杂度高、检测精度不足等问题,本文提出了一种基于改进YOLOv8n的检测算法YOLOv8ODAW。首先,引入全维动态卷积(ODConv)增强对多维度特征的捕捉能力,减少信息损失;其次,嵌入渐进特征金字塔网络(AFPN)改善特征融合过程,实现了非相邻层级特征间的直接交互,有效缓解语义断层。最后,采用动态非单调聚焦机制的Wise-IoUv3损失函数优化边界框回归,加快网络收敛的同时提高检测精度。在NEU-DET数据集上进行多组实验,结果表明,改进后的YOLOv8-ODAW网络模型相比原网络模型mAP50%提升了7.3%、GFLOPs下降了21.95%,展现出对钢材表面缺陷更佳的定位与识别能力,且检测速度满足工业应用需求。

    • 基于改进YOLOv4算法的高压塔鸟巢检测

      2022, 45(18):145-152.

      关键词:参数量;逆残差网络;细节特征;检测能力
      摘要 (212)HTML (0)PDF 1.43 M (521)收藏

      摘要:针对现有算法对高压塔上鸟巢检测存在参数量过大,实时性不足及对小目标检测能力较弱的问题,提出了一种改进的YOLOv4算法。首先使用Mobilenetv2网络代替CSPDarknet53网络作为主干网络,减少算法的参数量且提升检测速度;同时在Mobilenetv2网络的逆残差网络中嵌入注意力Coordinate Attention模块,增强网络对目标特征提取能力。然后,对PANet网络进行改进,获取更多的细节特征信息,提高对小目标鸟巢的检测能力。最后,使用Focal Loss函数优化损失函数,降低大量简单背景样本训练的权重,提升对小目标鸟巢困难样本训练的侧重,进一步提高对小目标鸟巢的检测能力。实验结果表明,较原始的YOLOv4算法,改进后的YOLOv4算法的参数量减少了48.1%,检测速度和精度分别提高了12.9fps和2.33%。即改进后的YOLOv4算法大幅度减少了算法参数量,且对鸟巢的检测拥有更好的检测性能。

    上一页1下一页
    共1页2条记录 跳转到GO
出版年份