2025, 48(1):55-63.
摘要:针对公共场合密集人群场景下由于人群遮挡导致的信息缺失及检测目标较小、分辨率低导致人脸佩戴口罩检测算法检测困难的问题,提出了一种改进YOLOv8的密集人群口罩检测算法。采用 GD机制代替YOLOv8中FPN结构解决跨层信息传输中信息丢失的问题,GD使用一个统一的模块收集和融合所有层级的信息,实现网络跨层信息的无损传输,增强了网络特征提取能力。在GD机制中插入ODconv模块对GD传输的信息沿4个维度进行学习,提高模型低分辨目标和小目标的检测精度。此外,引入了一种轻量化检测头SCSBD,对占比过高的YOLOv8检测头进行轻量化处理,平衡模型大小。实验结果表明,改进后的网络在精确率、召回率和平均精度上分别提升了13.6%、1.5%和6.9%,对人脸口罩的检测精度达到了81.1%,模型权重文件仅为25 MB,模型大小介于YOLOv8s和Gold-YOLO-S之间,达到了大小和精度的平衡。
2021, 44(23):105-110.
摘要:当前疫情防控形势严峻,在人群密集场所进行实时快速的口罩佩戴检测可以有效降低病毒传播的风险。针对目前人工检测效率低的问题,提出一种基于YOLOv3的轻量化口罩佩戴检测算法。使用ShuffleNetv2替换原来的主干特征提取网络,降低网络参数量,减少计算功耗。提出将SKNet注意力机制引入到特征融合网络部分,增强不同尺度的特征提取能力;使用CIoU作为边界框回归损失函数,进一步提高检测精度。在构建的人脸口罩检测数据集上实验表明,与原YOLOv3相比,本文所提算法在保持较高检测精度的情况下,检测速度提高了34FPS,有效地实现了准确快速的口罩佩戴检测,与其他主流目标检测算法相比,该算法也具有更好的检测效果。