2022, 45(1):104-110.
摘要:极化合成孔径雷达可以工作在多个极化方式下,综合利用多种极化回波数据实现地物分类是极化数据处理的一个重要应用。目前将卷积神经网络应用于极化地物分类领域仍存在相应问题,包括多维极化分解特征信息给网络带来的信息冗余与维数灾难,逐像素切片预测导致分类效率低下。针对以上问题,本文提出了一种基于特征融合的全卷积网络模型。首先,设计两路编码层分支的全卷积网络结构,分别针对极化分解特征与极化散射特征提取深层特征,实现多维特征信息分离。然后采用注意力特征融合机制实现两路分支的特征融合,通过共享连接层学习通道注意力权值,重新分配网络的学习能力。此外引入改进的空洞空间金字塔模块,以提升模型的多尺度预测能力。实验结果表明:算法在两个不同地区的极化数据集的总体分类精度分别达到96.43%与99.60%,预测耗时分别为17.3s与10.1s。在不显著增加预测耗时的同时提升了分类精度,验证了算法的有效性。
2017, 40(12):220-227.
摘要:基于改进三分量散射模型提出一种全极化合成孔径雷达(SAR)图像非监督分类方法。运用改进三分量分解模型解决体散射过高估计和负功率像素问题,提出类别重估步骤解决Wishart迭代聚类使聚类中心发生迁移的问题。首先对极化相干矩阵进行去定向操作,将各个像素的定向角旋转为0°;然后利用改进三分量分解模型将目标分解为平面散射、二次散射和体散射3种成分;接着利用3种散射功率计算功率散射熵,根据散射熵和3种散射成分的功率进行初步分类,利用Wishart迭代聚类优化分类结果;最后对Wishart聚类的结果进行类别重估,实现极化SAR图像的非监督分类。结果表明,本文算法的物理意义明确,分类结果易与实际地物相结合,测试区域的总体分类精度为98.6%,Kappa系数为0.973。