2023, 46(20):164-169.
摘要:为提高公路隧道事故异常声音识别的准确率,并针对卷积神经网络只关注局部信息问题,提出了一种基于CNN-RNN集成的声音识别模型。该模型采用Stacking集成策略将CNN的强特征表达能力和RNN的强记忆能力相结合,并使用门控循环单元减少循环神经网络的计算复杂度,将SIREN正弦周期函数作为RNN的隐式激活函数,增强模型对声音数据的拟合能力,设计多通道卷积细化特征提取的精度,实现全局化特征提取。在异常声音数据集上评估了所提声音识别模型的识别性能,实验结果表明:提出的声音模型的识别性能高于其他模型,且更加稳健,可有效识别公路隧道事故的异常声音。
2023, 46(1):173-180.
摘要:为了提高电表示数检测和识别的准确率,基于轻量高效的YOLOv5s网络提出了改进的目标检测网络。首先,在特征提取阶段添加CBAM注意力机制对图像的重要特征进行自主学习,并设计了一种特征融合网络D-BiFPN加强了对深层特征的提取;其次,引入CIOU损失函数,使目标框的回归更加稳定。对CRNN文本识别算法的主干网络进行改进,模型保持轻量化的特点,在移动端部署上有良好的前景。最后,在电表数据集上测试得出:相比于YOLOv5算法,所提出的算法精度均值提升了5.13%;相比于CRNN算法,所提出的文本识别算法准确率提升了7.4%。实验结果表明,改进后的文本检测算法对电表示数的检测精度较高,文本识别算法准确率和速度较高,满足电表示数检测识别的实际应用需求。