基于卷积神经网络和语义特征的眼型分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

中国铁道总公司重大课题(2017X001-A)项目资助


Classification of eye shape based on convolutional neural network and semantic feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    眼睛是人脸特征最重要的构成部分,研究眼睛的特征点定位和形状分类问题,对扩充智能模拟画像系统中的眼睛库起着至关重要的作用。提出一种基于级联卷积神经网络与语义特征的人眼分类方法,采用三级的级联卷积神经网络,检测并由粗略到细致地定位出106个特征点,根据定位眼睛的20个特征点对眼睛进行形状建模并定义3个确定眼型的形状参数,对这3个参数进行分段处理,通过每一区间对应不同的语义描述来达到眼型分类的目的。实验结果表明,此方法定位准确,能达到良好的眼睛分类效果。

    Abstract:

    The eye is the most important part of the facial features. Studying the feature point location and shape classification of the eye plays an important role in face recognition. This paper proposes a human eye classification method based on cascaded convolutional neural network and semantic features. Three levels of cascaded convolutional neural networks were used to detect and locate 106 feature points from rough to meticulous, among which 20 feature points can accurately locate the eyes. Based on these 20 feature points, the shape of the eye is modeled and three shape parameters defining the eye shape are defined. These three parameters are segmented to achieve the purpose of eye classification according to different semantic descriptions of each interval. Experimental results show that this method is accurate and can achieve good eye classification effect.

    参考文献
    相似文献
    引证文献
引用本文

尚垚睿,卜凡亮.基于卷积神经网络和语义特征的眼型分类[J].电子测量技术,2019,42(3):16-20

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-20
  • 出版日期:
文章二维码