基于新的风格损失函数的图像风格转换方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN919.81

基金项目:


Method of image style transfer based on new style loss function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    虽然基于深度学习的图像风格转换方法已经取得了很大的进展,但是这些方法都没有考虑到生成图像的线条扭曲现象,为此提出直方图损失和转换Gramian矩阵相结合的方法。图像的直方图信息可以判断出图像质量的好坏,在图像风格转换中使用直方图损失,不仅可以增强图像,还可以使生成的图像更加稳定。转换Gramian矩阵类似于Gram矩阵,但是前者提取出图像纹理信息更加完整,还考虑到了图像的空间排列信息。实验结果表明,这两种方法的结合不仅能使生成的图像没有线条扭曲,还能减少图像生成的迭代次数。

    Abstract:

    Although great progress has been made in image style transfer based on deep learning, these methods were not took into account the distortion of lines in the generated image. Therefore, new method combining histogram loss with transformed Gramian matrix is proposed. The use of histogram loss in image style transfer is not only enhanced the image, but also made the generated image more stable. Transformed Gramian matrix is similar to Gram matrix, but the former is extracted more complete texture information, and also took into account the spatial arrangement of an image information. The experimental results show that combination of two methods can not only make the generated image without line distortion, but also reduce the number of iterations in image generation.

    参考文献
    相似文献
    引证文献
引用本文

钱燕芳,王敏.基于新的风格损失函数的图像风格转换方法[J].电子测量技术,2019,42(4):70-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-26
  • 出版日期:
文章二维码