基于C-SIFT特征向量图像复制粘贴篡改取证算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:


Copy and paste tampering forensics algorithm based on C-SIFT feature vector image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    如今网络时代中充斥着大量经篡改的图像,目前检测方式如局部不变性特征描述、Harris角点算法对复制粘贴篡改地检测准确率较低。通过对彩色图像分块、色彩空间边缘化提取、图像灰度化得到完整的灰度化局部图像。利用对不同图像块中的特征向量集提取、标记、匹配和归一化处理,在欧氏距离达到某一阈值后特征向量匹配成功,即检测到图像具有复制粘贴篡改的痕迹。最后选择3类不同的照片仿真测试,说明该算法可有效提升复制粘贴篡改图像的检测成功率、检测速率。

    Abstract:

    Nowadays, the network era is full of tamper-evident images. At present, the detection method such as local invariant characterization and the Harris corner algorithm has low accuracy in copying and pasting tampering. In this paper, a complete grayscale partial image is obtained by color image segmentation, color space edged extraction, and image grayscale. By extracting, marking, matching and normalizing the feature vector set in different image blocks, the feature vector is successfully matched after the Euclidean distance reaches a certain threshold, that is, the image has the trace of copying and pasting tampering. Finally, three different types of photo simulation tests are selected, which shows that the algorithm can effectively improve the detection success rate and detection rate of copying and pasting tampering images.

    参考文献
    相似文献
    引证文献
引用本文

都布,岳雅雯.基于C-SIFT特征向量图像复制粘贴篡改取证算法[J].电子测量技术,2019,42(5):29-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-29
  • 出版日期:
文章二维码