基于表面肌电和加速度信息融合的手势识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4; TN911.7

基金项目:


Gesture recognition based on fusion of surface electromyography and acceleration information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有手势识别方法中人为提取特征具有局限性的问题,考虑到MYO臂环稀疏多通道的特点,提出一种融合表肌电信号(sEMG)和加速度(ACC)信息的手势识别方案。首先由5位受试者佩戴MYO臂环,同步采集8组不同手势的多通道sEMG、ACC数据;其次采用一种新的数据预处理方法,使用高能量滑动窗将数据进行分割,得到短时有效活动段;最后设计出一种并行多层的LSTM网络,对两类数据进行特征提取和融合,实验准确率达96.87%。结果表明,所提出的手势识别方案简便可行。

    Abstract:

    Aiming at the limitation of the existing hand gesture recognition methods, considering the sparse multi-channel feature of MYO armband, this paper proposes a hand gesture recognition scheme which combines surface electromyogram (sEMG) and acceleration (ACC) information. Firstly, 5 participants wore MYO armbands, and simultaneously collected 8 groups of sEMG and ACC data of different gestures. Secondly, a new data preprocessing method is proposed, which will segment multi-channel sEMG and ACC data through high-energy sliding windows to obtain short-term effective active parts. Finally, a parallel sequence LSTM network is designed to extract and fuse the features of the two types of data. The accuracy of gesture recognition is 96.87%. The results show that the proposed scheme is simple and feasible.

    参考文献
    相似文献
    引证文献
引用本文

孔冬荣,朱杰.基于表面肌电和加速度信息融合的手势识别[J].电子测量技术,2019,42(5):85-89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-29
  • 出版日期:
文章二维码