基于谱聚类分析的托辊故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;TN911.2

基金项目:


Fault diagnosis for roller based on spectral clustering analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有效地诊断托辊故障,对提高选煤工作效率和工厂智能化水平具有重要的作用。针对工业现场环境复杂,噪音类型多且杂的特点,首先提出利用差分法来消除托辊音频序列数据时间趋势影响的有效方法,在此基础上提取托辊音频序列特征,分别利用K-Means和谱聚类算法进行聚类分析以及故障识别,并从噪音音频序列数据中挖掘有用的信息。然后为了评价聚类模型的优劣,创新提出将同一音频序列分割得到子音频序列的相同聚类标签的平均比率,以此作为聚类优劣的评判标准。实验结果表明,谱聚类算法的效果优于K-Means,动态选取谱聚类的参数值能够提高局部诊断准确率,且具有较强的鲁棒性,能够实现对生产范围内多种类型噪音音频信号进行有效聚类识别。智能化托辊故障诊断系统的应用提高了选煤工作效率,减少了非计划停机次数,产生了较好的经济效益。

    Abstract:

    Valid roller fault diagnose plays an important role in improving working efficiency and intelligent plant. In view of complex industrial environment and numerous noise types, first, a difference method is used to eliminate the influence of time trend in audio sequence data, and to extract the characteristics of the roller audio sequence. Secondly, K-Means and spectral clustering algorithms are used to have cluster analysis and roller faults identification. In order to evaluate advantages and disadvantages of proposed clustering model, an average ratio of sub-sequence same labels from an audio sequence is proposed to achieve the above aim. Experimental results show that local diagnostic accuracy can be improved by dynamic selection of parameter values. Roller fault can be effectively identified and diagnosed by two proposed clustering algorithms, but spectral clustering algorithm is superior to K-Means algorithm. By use of the proposed methods, one can see that the efficiency of coal preparation is improved, number of unplanned outages is reduced, and good economic benefits are also produced.

    参考文献
    相似文献
    引证文献
引用本文

宋天祥,杨明锦,杨林顺,张明明,彭晨.基于谱聚类分析的托辊故障诊断[J].电子测量技术,2019,42(5):144-150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-29
  • 出版日期:
文章二维码